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Abstract

In this paper we present our work towards an evaluation platform for data centre transport
protocols. We developed a simulation model for NDP1, a modern data transport protocol in data
centres, a FatTree network topology and per-packet ECMP load balancing. We also developed
a data centre environment that can be used to evaluate and compare data transport protocols,
usch as NDP and TCP. We describe how we integrated our model with the INET Framework and
present example simulations to showcase the workings of the developed framework. For that, we
ran a comprehensive set of experiments and studied different components and parameters of the
developed models.

1 Introduction

The study of network protocols for Data Centre Networks (DCNs) has become increasingly important,
given that data centres support all major Internet services, such as search (e.g. Google), social
networking (e.g. Facebook), cloud services (e.g. Amazon EC2) and video streaming (e.g. NetFlix).
DCNs consist of a large number of commodity servers and switches and support multiple paths among
servers. Recent research on data centre networking is based on various simulation tools and respective
models for network protocols [15, 19, 18].
OMNeT++ [25] is an excellent candidate for developing models for data centre networks and respec-
tive protocols, and more work is required for establishing it as the de facto simulator for this research
community. This is possible through the INET Framework, which is built on top of the simulation
core provided by OMNeT++. Omnet++ and INET is built around the concept of modules that
communicate by message passing. Protocols are represented by components, which can be combined
to form hosts, routers, switches and other networking devices. What makes this framework ideal
for evaluating DCN protocols is that new modules can be easily integrated with the existing mod-
ules. DCN topologies (e.g. FatTree [1]) can be easily built and parameterised using Omnet++ NED
language.
Modelling DCN protocols in OMNeT++. Recently, some DCN-related research has been based
on OMNeT++/INET [20, 4, 10, 3]. Achieving the critical mass of researchers that use OMNeT++ for
evaluating data centre networks and protocols requires making more modern protocols available in the
OMNeT++ environment. Large-scale simulations are crucial for the DCN research community given
that access to real-world deployments is very difficult. Developing models for DCNs in OMNeT++
would also ensure reproducibility, revisability (dynamic debugging and profiling) and control over the
studied traffic workloads (generating realistic traffic workloads in a deterministic fashion) [24].
Efficient data centre transport protocols. In DCNs, an efficient data transport mechanism
is crucial to provide near-optimal completion times for short transfers and high goodput for long
flows. The performance of TCP in DCNs is problematic due to TCP Incast [9], queue build-up and
buffer pressure [13, 23, 16] and per-flow ECMP collisions. TCP performance can get singificantly
degraded because of frequent retransmissions of lost packets [5, 16]. Recently, a large body of work
aimed at tackling various aspects of data centre transport: proposed approaches usually focus on
either achieving low latency [5, 21, 26, 20, 6] or high throughput [16, 22, 11, 2]. NDP [13] appears
to perform well with respect to both low latency and high throughput requirements by combining a
number of data transport mechanisms.

1https://github.com/mohammedalasmar/ndpTcpDatacentreOmnetppModel (OMNeT++-5.2.1 & INET-3.6.3)

https://github.com/mohammedalasmar/ndpTcpDatacentreOmnetppModel
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NDP and FatTree models. In this paper we present an OMNeT++/INET framework for evaluat-
ing data transport protocols (NDP and TCP) in data centres. This includes: (1) a model for building
FatTree topologies to evaluate the performance of TCP, NDP and other community-developed pro-
tocol models for data centres (§2), (2) a model for per-packet and per-flow Equal-Cost Multi-Path
(ECMP) load balancing in a FatTree topology (§3), (3) a model for NDP (§4 and §5), and (4) a central
traffic scheduler for scheduling flows in the simulated network and setting up simulation parameters
for experimenting with the above-mentioned contributions (§5).

2 FatTree Topology

Among the recently proposed DCN topologies, FatTree, which originated from the Clos switching
network, is widely used [1]. We developed a FatTree topology generator using the NED language.
FatTree data centres allow any two servers to communicate by fully utilising network resources and
ensuring non-blocking behaviour. The role of core switches is to forward traffic among aggregation
switches, and that of the aggregation switch is to inter-connect core and edge switches. The edge
switches reside at lowest level of the topology, and forward traffic between hosts and aggregation
switches (see Figures 1a&2). The size of a FatTree topology depends on the number of pods it
consists of (k). A FatTree network consists of three layers: the core layer, aggregation layer and
edge layer. In a k-ary FatTree topology there are k2/4 core switches which is the same number as
the shortest-paths between any two servers that are connected to any pod in the network. Each pod
contains k servers and k switches. These switches are divided into two layers each consisting of k/2
switches. The first layer is the edge where each switch is connected to k/2 of the servers (a rack)
in the same pod, while the second layer is the aggregation layer where each switch is connected to
k/2 of the core switches. Each core switch is connected to one aggregation switch of each pod. The
maximum number of servers in a FatTree with k pods is k3/4. All switches have the same number
of ports which is equal to k. Table 1 summarises the construction of a k-ary FatTree (with examples
when k = 4, 8 and 10).

Pods k 4 8 10

Servers k × k/2 × k/2 16 128 250

Core switches (= servers in each Pod) k/2 × k/2 4 16 25

Edge switches in each Pod (racks) k/2 2 4 5

Aggregation switches in each Pod k/2 2 4 5

Total edge/aggregation switches k × k/2 8 24 50

Switch ports k 4 8 10

Equal-cost path between any pair of
servers (at different pod)

k/2 × k/2 4 16 50

Table 1: k-ary FatTree topology architecture: examples when k = 4, 8 and 10

Generating FatTree networks. The implementation of the FatTree topology using the NED
language is based on the values in Table 1. The only required input value to generate the topology is
k. Figure 1 shows an example of a generated FatTree topology when k = 4. The FatTree module is a
network (complex) module that contains two simple modules: Pod and Rack submodules. The NED
code for the FatTree module is depicted in Figure 1a, which is used to create a single link between
each core switch and each pod.

3 Per-packet and per-flow ECMP

Modern data centre transport protocols exploit the existence of multiple equal-cost paths in FatTree
networks to better balance traffic in the network, eliminate hotspots and achieve high throughput.
ECMP is used for packet forwarding in the network [14]. In per-flow ECMP, packets are classified
into different flows by hashing the each packet’s 5-tuple (source IP address, destination IP address,
protocol number, source port number and destination port number). Packets of the same flow go over
the same link, as depicted in Figure 2a. Per-flow hashing ensures that packets belonging to the same
flow (or sub-flow in MultiPath TCP) will arrive in order to their destination. However, this can cause

2
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(a) FatTree (b) Pod 

(c) Rack 

network FatTreeNdp
{

parameters:
// k pods
int k = default(4);

submodules:
Pod[k]: Pod;
CoreRouter[(k/2)^2]: Router;

connections:
for i=0..k-1, for j=0..sizeof(CoreRouter)-1 {

Pod[i].podg++ <--> CoreRouter[j].pppg++;
}

}

(a) FatTree topology (k=4)

[General]
network = FatTreeNdp
**.k = ${FatTreeSize=4..40 step 2}
**.trafficMatrixType = ${"permTM"}
# or randTM
**.arrivalRate = 2000 #Poisson process 
**.flowSize = 100 # 150KB(each 1500B)
**.numShortFlows = 2000

**.longFlowSize = 100000 #150MB 
**.percentLongFlowNodes = 0.15

**.initialWindow = 15
**.ndpSwitchQueueLength = 8
**.perPacketEcmp = true
**.perFlowEcmp = false
**.seedValue = 1111
**.ppp[*].queueType = "NDPQueue”

(b) centralScheduler ini file

Figure 1: FatTree implementation in NED language including a central scheduler node

Core 

1

Agg. 

Edge  

path1path2path3
path4

Hostx HostyHosta Hostb

(a) Per-flow ECMP (b) Per-packet ECMP

Figure 2: (a) Per-flow ECMP vs (b) per-packet ECMP in 4-FatTree Figure 3: NDP modules

significant underutilisation in the network due to collisions of large flows (i.e. when a large number of
flows cross the same link while other links are not used) and this can significantly reduce throughput,
as discussed in [12]. In addition, per-flow load-balancing can result in unequal link utilisation and
hotspots. In per-packet ECMP, packet forwarding is randomised over all equal-cost links used
for load balancing, as shown in Figure 2b. Per-packet multipath forwarding is a good option when
using a data transport protocol that can tolerate reordering (e.g., NDP [13][3]). As per-packet ECMP
may result in packets arriving out of order, it cannot be used with data transport protocols that are
sensitive to packet reordering (e.g., TCP).

A model of per-packet and per-flow ECMP in INET. We implemented both per-packet and
per-flow ECMP by updating the source code that is provided in INETv3.6.3 network layer. Routing
in INET is done in five main steps as follows: (1) building topology and assigning addresses (Network-
ConfiguratorBase::Topology), (2) setting links and node weights (IPv4NetworkConfigurator::computeConfiguration),
(3) using Dijkstra’s Algorithm for multiple paths (Topology::calculateWeightedSingleShortestPathsTo),
(4) adding a route to all destinations in the network (IPv4NetworkConfigurator::addStaticRoutes) and
(5) generating the routing tables (IPv4RoutingTable::printRoutingTable).
When implementing ECMP, we updated step 3 so that all shortest paths to all destinations are
registered. Additionally, we updated step 4 to include the updates in step 3 when adding routes
to all destinations. The routing tables in step 5 are automatically updated. Finally, we imple-
mented the hashing function in IPv4RoutingTable::findBestMatchingRouteEcmp (which is called by
IPv4::routeUnicastPacket). There are two options for hashing:

3
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• per-packet ECMP: selectPath = rand()% numPossibleEcmpRouts, and
• per-flow ECMP: selectPath = hashValue% numPossibleEcmpRouts, where the hashValue is

calculated based on the 5-tuple (we also included the router’s name in this hashing).

4 A model of NDP in INET
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Figure 4: NDP operation 2

NDP aims at offering both low latency and high throughput in FatTree data centre networks. NDP
combines several ideas into a clean slate protocol design. NDP exhibits very good performance
by employing receiver-driven flow control and packet trimming. NDP will be deployable when P4
switches [8] are deployed in data centres. NDP operation can be summarised as follows (and depicted
through the numbered circles in Figure 4). Senders are allowed to send an initial window of data
at line rate (circles 1 and 2). Switches use shallow buffers (e.g. 8 packets long) with two queues:
the data (used for data packets only) and control (high priority) queue (for PULL, ACK, NACK
and Header packets). If the data queue overflows, the packet payload is trimmed and the header is
priority-forwarded (circles 3, 4, 5 and 6). At the receiver, an ACK for each data packet received and
a NACK for each header will be sent immediately to the sender (circles 7 and 8). The receiver has
a shared PULL queue between all active connections. The receiver adds a PULL packet for every
received header or data packet (circle 9). The receiver paces PULL packets so as to fill the receiver’s
incoming link. Pacing is across all connections, so that the aggregate rate matches the receiver’s
link speed (circle 10). The goal is to keep the incoming link full, so the receiver spaces pull requests
accordingly (e.g. assuming each incoming packet has the same MTU size = 1500B, then the receiver
sends a packet every MTU

1Gbps = 12µ seconds if the receiver’s link speed is 1Gbps). At the sender, PULL

requests trigger either a retransmission or a new data packet (circle 11).
Here we describe how we implemented NDP in INET. Our implementation follows the TCP model in
INET. We developed StandardHostNdp, a predefined NED type which is an OMNeT++ compound
module that is composed of the following components:
Applications. There are two main applications that can communicate with the NDP layer, as
shown in Figure 3. The first application is the NdpBasicClientApp module, which is used by NDP

2This is an abstract diagram of NDP functionality – the details of NDP can be found in [13]
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senders to start a connection. The second application module is NdpSinkApp which is used by NDP
receivers to listen for incoming connections. NDP applications and the NDP layer communicate with
each other by sending cMessage objects. These messages are specified in the NDPCommand.msg
file. The NDPCommandCode enumeration defines the types of messages that are sent by the appli-
cation to the NDP layer. These are the main message types: NDP C OPEN ACTIVE : active open,
NDP C OPEN PASSIVE : passive open, NDP C SEND : send data and NDP C CLOSE : no more
data to send. Each command message should have attached control information of type NDPCom-
mand. For example, the command message NDP C OPEN ACTIVE requires this control informa-
tion to be attached: connId, localAddr, locarPrt, remoteAddr, remotePrt and numPacketsToSend.
In Figure 5, NdpSinkApp can open a local port by sending a NDP C PASSIVE OPEN to the NDP
layer with control information that contains the local address and port. NdpBasicClientApp opens a
connection to a remote server by sending a NDP C OPEN ACTIVE command to the NDP layer.
NDP layer.The NDP module creates an NDPConnection object upon receiving either an active
or passive open command from an NDP application. The main message kinds that the application
receives from the NDP layer are: NDP I ESTABLISHED : connection established, NDP I DATA:
data packet received and NDP I PEER CLOSED : FIN flag received from remote NDP. The NDP
module and the NDP applications implement NDP operations (as discussed in §4) as follows:

1. The NDP sender performs the following operations (see Figure 5):

• creates the sendQueue for the data to be sent: NDPMSgBasedSendQueue::init(data),
• sends the initial window of data packets with SYN flag: sendInitialWindow(),
• precesses received packet (can be ACK, NACK or PULL) from the receiver: NDPConnec-

tion::process RCV Pkt(ndpPkt). The sender takes one of the following actions:

– frees acknowledged data packet: sendQueue->ackArrivedFree(ndpPkt),
– queues NACKed data packet for retransmission: nackArrivedMoveFront(ndpPkt),
– sends data packet if PULL request arrived: sendQueue->sendNdpPkt(),

• sets the FIN flag when sending the last data packet: ndpPkt->setFinFlag(true).

2. The NDP receiver performs the following operations (see Figure 5):

• establishes a connection when receiving a data packet with the SYN flag set: NDPConnec-
tion:processPktInListen(pktSynTrue),

• acknowledges a received data packet: sendAckPkt(seqNo),
• sends NACK when receiving header packet: sendAckPkt(seqNo),
• adds PULL packet to the PULL queue upon receiving either data or header packet: ad-

dRequestToPullQueue(),
• schedules a self message that is used to pace pull packets from the PULL queue: Sched-

uleAt(PACING TIME, pullTimerMsg)
• removes all pull packets when receiving the last data packet: pullQueue->removePulls()

Network layer. The IPv4 module performs IP encapsulation/decapsulation and routing of data-
grams. This is based on function call interface of the IPv4RoutingTable which we updated as discussed
in §3.
NICs. We use the available NIC modules (PPPInterface and EthernetInterface) that are provided
in the INET Framework.
NDP Switch. It contains two queues: (1) highPriorityQueue: which is used to enqueue Header,
ACK, NACK and PULL packets, and (2) dataQueue: which is used to enqueue data packets. NDP
switches trim packets when their dataQueue is full and insert the headers in the highPriorityQueue.
NDPSwitch:dequeue() is round robin (10:1 ratio) between the two queues.

5 Experimenting with the Simulation Framework

We developed a central scheduler node (centralSchedulerNdp3) to schedule NDP connections in a
FatTree topology (as shown in Figure 1). The main parameters in this node are shown in Figure 1b
and explained below:

3We have developed another scheduler: centralSchedulerTcp, which is used for TCP experiments and it has a
similar interface as the NDP scheduler. It is used to schedule TCP connections in a FatTree topology.
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socket.connect(ACTIVE_OPEN)

connId

NDP Sender NDP Receiver

connId

NdpBasicClientApp module

NDP module

• conn->process_OPEN_ACTIVE(msg)

• NDPMSgBasedSendQueue::init(dataToSend)

• sendInitialWindow(): ndpPkt->setSynBit(true)

• NDPConnection::process_RCV_Pkt(ndpPkt) 

• ndpPkt->getAckBit(true) 

è sendQueue->ackArrivedFree(ndpPkt)

• ndpPkt->getNackBit(true) 

è sendQueue->nackArrivedMoveFront(ndpPkt)

• ndpPkt->getIsPullPkt(true) 

è sendQueue->sendNdpPkt()

• ndpPkt->setFinFlag(true) 

• conn->process_OPEN_PASSIVE(msg)

• NDPConnection:processPktInListen(pktSynTrue)

• ndpPkt->getIsDataPkt(true) 

è sendAckPkt(seqNo) 

è addRequestToPullQueue()

• ndpPkt->getIsHeaderPkt(true) 

è sendNackPkt(seqNo) 

è addRequestToPullQueue()

• ScheduleAt(PACING_TIME, pullTimerMsg)  

è pullQueue->sendNewPull()

• ndpPkt->finFlagTrue()

è pullQueue->removePulls()

NDP module

NdpSinkApp module

socket.bind(PASSIVE_OPEN)
listen

Figure 5: NDP implementation

• FatTreeSize. This is used to generate a k-ary FatTree topology (as described in §2)
• trafficMatrixType. The scheduler node can schedule either a permutation or random traffic

matrix (as explained in[17])
• arrivalRate. This is used to generate flow arrival times according to a Poisson process. This is

implemented by creating an exponential distribution (mean = 1/λ) based on the Poisson arrival
rate λ.

• flowSize. This is the size of the data (number of packets) that each created NdpBasicClientApp
is going to send to an NdpSinkApp.

• numShortFlows. This is the number of NDP connections that will be scheduled based on
the selected traffic matrix, e.g. scheduling 1000 flows means that there are 1000 different
NdpBasicClientApps communicate with 1000 NdpSinkApps.

• longFlowSize and percentLongFlowNodes. These parameters are used to generate background
traffic in the simulation. The background traffic can either run until all short flows will finish or
by assigning the size of the long flows to a large flow size. For example, percentLongFlowNodes
of 30% in a 10-FatTree (250 servers) topology means that there are 75 servers that are used
only to run background traffic.

• initialWindow and ndpSwitchQueueLength. These are used as described in Section refndp-
section).

5.1 NDP Experiments

Here, we present experimentation using the developed NDP model. We conducted four different
experiments4.
Experiment 1. We ran this experiment with the parameters that are shown in Figure 1b in a
6-FatTree (54 servers) where 15% of servers (8 servers) ran background load. The number of short
flows were 2000 and each flow had a size of 150KB. The results of this experiment are shown in Figure
6 (one seed was used). The developed model provides the ability to record and plot the following
measurements: goodput (Figure 6a), flow completion time (FCT) (Figure 6b), the number of received
header packets per flow (connection) (Figure 6c), the number of data sending applications at each
server (Figure 6d), the number of data receiving applications at each server (Figure 6d) and traffic
matrix plot (Figure 6e). We use OMNeT++’s scavetool command-line tool to process the results.

4Due to space limitations we will not discuss simulations with TCP. Some of these results can be found in [3].
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Figure 6: The results of running 2000 NDP short flows (150KB each) in a 6-FatTree (54 servers)
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Figure 7: Per-flow vs per-packet ECMP in 12-FatTree (36 core switches) topology. Each colour in
each bar (12 colours) represents the number of received packets at each port (12-port switch)

These scripts can be found in the shell file (runNdpSimulation.sh) that we use to run the simulation
and generate several .csv files which are input to MATLAB scripts to produce the required figures 5.
The results are as expected; most flows achievedvery high goodput and low Flow Completion Times.

Experiment 2. In this experiment, we compare between per-flow and per-packet ECMP in a FatTree
topology. We have simulated the two protocols in a 12-FatTree (36 core switches) by running 5000
short flows (300KB each) and with arrival rate λ = 2000 (without introducing any background load).
The other parameters are as depicted in Figure 1b. Figure 7 illustrates the number of received packets
at each port of the 36 12-port core switches. It is obvious that per-packet ECMP provides better
load balancing than per-flow ECMP (as discussed in §3).
Experiment 3. In this experiment we test the performance of NDP when varying specific parame-
ters. A key parameter of NDP is the initial window of packets that a sender pushes to the network.
In Figure 8a, we observe that for very small values of the initial window, the goodput is very low and
the receiver’s downlink underutilised. As the window increases, utilisation approaches the maximum
available link capacity (for 16 packets). For larger values, the measured goodput is the same (full link
capacity). In Figure 8b, we show the goodput of NDP flows at different flow sizes (when λ = 2500).
Similarly, in Figure 8b, we obtain the goodput of 10000 flows (1.5MB each) at different λ values.

5The shell and MATLAB scripts are available in the GitHub repository, along with a demo.
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Figure 9: FCT of web search workload flows (two ranges) at different background loads

Experiment 4. In the experiment, we use realistic web search workloads reported by data centre
operators to evaluate NDP [5]. We simulate two target loads of background traffic (0.5 and 0.8). We
generate 20000 flows, with λ = 2500. We report the flow completion time (FCT) of all flows (split in
two different ranges), as shown in Figure 9. NDP achieves low FCT.

6 Summary and future work

The proposed model is intended to be used to evaluate NDP and compare its performance with
existing models (e.g. TCP) in a FatTree data centre topology. The current implementation supports
most of NDP’s specifications. The current version of our NDP model does not support priority
pulling at the pull queue. As a future work, we plan to improve the NDP model by allowing priority
pacing in the pull queue for short flows. In addition, we aim at leveraging multiple priority queues
available in commodity switches to implement a Multiple Level Feedback Queue (MLFQ). Also, we
aim at evaluating NDP in Incast and Outcast scenarios and assess the provided fairness among
competing flows. Furthermore, we plan to build more OMNeT++/INET-based models that simulate
other modern data transport protocols for DCNs, such as DCTCP[5], MPTCP[23], DCQCN[27] and
PIAS[7].
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