
Evaluating Modern Data Centre Transport Protocols in

OMNeT++/INET

Mohammed Alasmar and George Parisis

School of Engineering and Informatics
University of Sussex, UK

M.Alasmar@sussex.ac.uk, G.Parisis@sussex.ac.uk

Abstract

In this paper we present our work towards an evaluation platform for data centre transport
protocols. We developed a simulation model for NDP1, a modern data transport protocol in data
centres, a FatTree network topology and per-packet ECMP load balancing. We also developed
a data centre environment that can be used to evaluate and compare data transport protocols,
usch as NDP and TCP. We describe how we integrated our model with the INET Framework and
present example simulations to showcase the workings of the developed framework. For that, we
ran a comprehensive set of experiments and studied different components and parameters of the
developed models.

1 Introduction

The study of network protocols for Data Centre Networks (DCNs) has become increasingly important,
given that data centres support all major Internet services, such as search (e.g. Google), social
networking (e.g. Facebook), cloud services (e.g. Amazon EC2) and video streaming (e.g. NetFlix).
DCNs consist of a large number of commodity servers and switches and support multiple paths among
servers. Recent research on data centre networking is based on various simulation tools and respective
models for network protocols [15, 19, 18].
OMNeT++ [25] is an excellent candidate for developing models for data centre networks and respec-
tive protocols, and more work is required for establishing it as the de facto simulator for this research
community. This is possible through the INET Framework, which is built on top of the simulation
core provided by OMNeT++. Omnet++ and INET is built around the concept of modules that
communicate by message passing. Protocols are represented by components, which can be combined
to form hosts, routers, switches and other networking devices. What makes this framework ideal
for evaluating DCN protocols is that new modules can be easily integrated with the existing mod-
ules. DCN topologies (e.g. FatTree [1]) can be easily built and parameterised using Omnet++ NED
language.
Modelling DCN protocols in OMNeT++. Recently, some DCN-related research has been based
on OMNeT++/INET [20, 4, 10, 3]. Achieving the critical mass of researchers that use OMNeT++ for
evaluating data centre networks and protocols requires making more modern protocols available in the
OMNeT++ environment. Large-scale simulations are crucial for the DCN research community given
that access to real-world deployments is very difficult. Developing models for DCNs in OMNeT++
would also ensure reproducibility, revisability (dynamic debugging and profiling) and control over the
studied traffic workloads (generating realistic traffic workloads in a deterministic fashion) [24].
Efficient data centre transport protocols. In DCNs, an efficient data transport mechanism
is crucial to provide near-optimal completion times for short transfers and high goodput for long
flows. The performance of TCP in DCNs is problematic due to TCP Incast [9], queue build-up and
buffer pressure [13, 23, 16] and per-flow ECMP collisions. TCP performance can get singificantly
degraded because of frequent retransmissions of lost packets [5, 16]. Recently, a large body of work
aimed at tackling various aspects of data centre transport: proposed approaches usually focus on
either achieving low latency [5, 21, 26, 20, 6] or high throughput [16, 22, 11, 2]. NDP [13] appears
to perform well with respect to both low latency and high throughput requirements by combining a
number of data transport mechanisms.

1https://github.com/mohammedalasmar/ndpTcpDatacentreOmnetppModel (OMNeT++-5.2.1 & INET-3.6.3)

https://github.com/mohammedalasmar/ndpTcpDatacentreOmnetppModel

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

NDP and FatTree models. In this paper we present an OMNeT++/INET framework for evaluat-
ing data transport protocols (NDP and TCP) in data centres. This includes: (1) a model for building
FatTree topologies to evaluate the performance of TCP, NDP and other community-developed pro-
tocol models for data centres (§2), (2) a model for per-packet and per-flow Equal-Cost Multi-Path
(ECMP) load balancing in a FatTree topology (§3), (3) a model for NDP (§4 and §5), and (4) a central
traffic scheduler for scheduling flows in the simulated network and setting up simulation parameters
for experimenting with the above-mentioned contributions (§5).

2 FatTree Topology

Among the recently proposed DCN topologies, FatTree, which originated from the Clos switching
network, is widely used [1]. We developed a FatTree topology generator using the NED language.
FatTree data centres allow any two servers to communicate by fully utilising network resources and
ensuring non-blocking behaviour. The role of core switches is to forward traffic among aggregation
switches, and that of the aggregation switch is to inter-connect core and edge switches. The edge
switches reside at lowest level of the topology, and forward traffic between hosts and aggregation
switches (see Figures 1a&2). The size of a FatTree topology depends on the number of pods it
consists of (k). A FatTree network consists of three layers: the core layer, aggregation layer and
edge layer. In a k-ary FatTree topology there are k2/4 core switches which is the same number as
the shortest-paths between any two servers that are connected to any pod in the network. Each pod
contains k servers and k switches. These switches are divided into two layers each consisting of k/2
switches. The first layer is the edge where each switch is connected to k/2 of the servers (a rack)
in the same pod, while the second layer is the aggregation layer where each switch is connected to
k/2 of the core switches. Each core switch is connected to one aggregation switch of each pod. The
maximum number of servers in a FatTree with k pods is k3/4. All switches have the same number
of ports which is equal to k. Table 1 summarises the construction of a k-ary FatTree (with examples
when k = 4, 8 and 10).

Pods k 4 8 10

Servers k × k/2 × k/2 16 128 250

Core switches (= servers in each Pod) k/2 × k/2 4 16 25

Edge switches in each Pod (racks) k/2 2 4 5

Aggregation switches in each Pod k/2 2 4 5

Total edge/aggregation switches k × k/2 8 24 50

Switch ports k 4 8 10

Equal-cost path between any pair of
servers (at different pod)

k/2 × k/2 4 16 50

Table 1: k-ary FatTree topology architecture: examples when k = 4, 8 and 10

Generating FatTree networks. The implementation of the FatTree topology using the NED
language is based on the values in Table 1. The only required input value to generate the topology is
k. Figure 1 shows an example of a generated FatTree topology when k = 4. The FatTree module is a
network (complex) module that contains two simple modules: Pod and Rack submodules. The NED
code for the FatTree module is depicted in Figure 1a, which is used to create a single link between
each core switch and each pod.

3 Per-packet and per-flow ECMP

Modern data centre transport protocols exploit the existence of multiple equal-cost paths in FatTree
networks to better balance traffic in the network, eliminate hotspots and achieve high throughput.
ECMP is used for packet forwarding in the network [14]. In per-flow ECMP, packets are classified
into different flows by hashing the each packet’s 5-tuple (source IP address, destination IP address,
protocol number, source port number and destination port number). Packets of the same flow go over
the same link, as depicted in Figure 2a. Per-flow hashing ensures that packets belonging to the same
flow (or sub-flow in MultiPath TCP) will arrive in order to their destination. However, this can cause

2

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

(a) FatTree (b) Pod

(c) Rack

network FatTreeNdp
{

parameters:
// k pods
int k = default(4);

submodules:
Pod[k]: Pod;
CoreRouter[(k/2)^2]: Router;

connections:
for i=0..k-1, for j=0..sizeof(CoreRouter)-1 {

Pod[i].podg++ <--> CoreRouter[j].pppg++;
}

}

(a) FatTree topology (k=4)

[General]
network = FatTreeNdp
**.k = ${FatTreeSize=4..40 step 2}
**.trafficMatrixType = ${"permTM"}
or randTM
**.arrivalRate = 2000 #Poisson process
**.flowSize = 100 # 150KB(each 1500B)
**.numShortFlows = 2000

**.longFlowSize = 100000 #150MB
**.percentLongFlowNodes = 0.15

**.initialWindow = 15
**.ndpSwitchQueueLength = 8
**.perPacketEcmp = true
**.perFlowEcmp = false
**.seedValue = 1111
**.ppp[*].queueType = "NDPQueue”

(b) centralScheduler ini file

Figure 1: FatTree implementation in NED language including a central scheduler node

Core

1

Agg.

Edge

path1path2path3
path4

Hostx HostyHosta Hostb

(a) Per-flow ECMP (b) Per-packet ECMP

Figure 2: (a) Per-flow ECMP vs (b) per-packet ECMP in 4-FatTree Figure 3: NDP modules

significant underutilisation in the network due to collisions of large flows (i.e. when a large number of
flows cross the same link while other links are not used) and this can significantly reduce throughput,
as discussed in [12]. In addition, per-flow load-balancing can result in unequal link utilisation and
hotspots. In per-packet ECMP, packet forwarding is randomised over all equal-cost links used
for load balancing, as shown in Figure 2b. Per-packet multipath forwarding is a good option when
using a data transport protocol that can tolerate reordering (e.g., NDP [13][3]). As per-packet ECMP
may result in packets arriving out of order, it cannot be used with data transport protocols that are
sensitive to packet reordering (e.g., TCP).

A model of per-packet and per-flow ECMP in INET. We implemented both per-packet and
per-flow ECMP by updating the source code that is provided in INETv3.6.3 network layer. Routing
in INET is done in five main steps as follows: (1) building topology and assigning addresses (Network-
ConfiguratorBase::Topology), (2) setting links and node weights (IPv4NetworkConfigurator::computeConfiguration),
(3) using Dijkstra’s Algorithm for multiple paths (Topology::calculateWeightedSingleShortestPathsTo),
(4) adding a route to all destinations in the network (IPv4NetworkConfigurator::addStaticRoutes) and
(5) generating the routing tables (IPv4RoutingTable::printRoutingTable).
When implementing ECMP, we updated step 3 so that all shortest paths to all destinations are
registered. Additionally, we updated step 4 to include the updates in step 3 when adding routes
to all destinations. The routing tables in step 5 are automatically updated. Finally, we imple-
mented the hashing function in IPv4RoutingTable::findBestMatchingRouteEcmp (which is called by
IPv4::routeUnicastPacket). There are two options for hashing:

3

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

• per-packet ECMP: selectPath = rand()% numPossibleEcmpRouts, and
• per-flow ECMP: selectPath = hashValue% numPossibleEcmpRouts, where the hashValue is

calculated based on the 5-tuple (we also included the router’s name in this hashing).

4 A model of NDP in INET

1 2 3 4 5 6 7 8

Data Queue is Full

New incoming packet

(but data queue is full)

Packet is trimmed

Upon receiving header,

the receiver sends

NACK to the sender

Sender

PULLs Queue

N
A

C
K

N
A

C
K

NACK informs the

sender to prepare

the trimmed packet

for retransmission

Add PULL packet to the pull

queue for every received

header or data packet

P

P

P

PULLs trigger

retransmissions, or

sending new data

Data

1 Send initial window (~8

packets) at line rate

2

NDP switch

1. Data Queue

2. Priority Queue

(N/ACKs, PULLs, Headers)

3

4

1 2 3 4 5 6 7 8

9
5

6

7
8

9 1 2 3 4 5 6 7 8

PPPPPPPP

Pace pull

packets so as

to fill the

receiver’s

incoming link

(e.g.,

MTU/1Gbps)

10

11

The data queue

starts to build at

the ToR NDP switch

Trimmed headers get

priority forwarded

Receiver

9

& send ACK for each

received data packet.

Free acknowledged

data.

Figure 4: NDP operation 2

NDP aims at offering both low latency and high throughput in FatTree data centre networks. NDP
combines several ideas into a clean slate protocol design. NDP exhibits very good performance
by employing receiver-driven flow control and packet trimming. NDP will be deployable when P4
switches [8] are deployed in data centres. NDP operation can be summarised as follows (and depicted
through the numbered circles in Figure 4). Senders are allowed to send an initial window of data
at line rate (circles 1 and 2). Switches use shallow buffers (e.g. 8 packets long) with two queues:
the data (used for data packets only) and control (high priority) queue (for PULL, ACK, NACK
and Header packets). If the data queue overflows, the packet payload is trimmed and the header is
priority-forwarded (circles 3, 4, 5 and 6). At the receiver, an ACK for each data packet received and
a NACK for each header will be sent immediately to the sender (circles 7 and 8). The receiver has
a shared PULL queue between all active connections. The receiver adds a PULL packet for every
received header or data packet (circle 9). The receiver paces PULL packets so as to fill the receiver’s
incoming link. Pacing is across all connections, so that the aggregate rate matches the receiver’s
link speed (circle 10). The goal is to keep the incoming link full, so the receiver spaces pull requests
accordingly (e.g. assuming each incoming packet has the same MTU size = 1500B, then the receiver
sends a packet every MTU

1Gbps = 12µ seconds if the receiver’s link speed is 1Gbps). At the sender, PULL

requests trigger either a retransmission or a new data packet (circle 11).
Here we describe how we implemented NDP in INET. Our implementation follows the TCP model in
INET. We developed StandardHostNdp, a predefined NED type which is an OMNeT++ compound
module that is composed of the following components:
Applications. There are two main applications that can communicate with the NDP layer, as
shown in Figure 3. The first application is the NdpBasicClientApp module, which is used by NDP

2This is an abstract diagram of NDP functionality – the details of NDP can be found in [13]

4

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

senders to start a connection. The second application module is NdpSinkApp which is used by NDP
receivers to listen for incoming connections. NDP applications and the NDP layer communicate with
each other by sending cMessage objects. These messages are specified in the NDPCommand.msg
file. The NDPCommandCode enumeration defines the types of messages that are sent by the appli-
cation to the NDP layer. These are the main message types: NDP C OPEN ACTIVE : active open,
NDP C OPEN PASSIVE : passive open, NDP C SEND : send data and NDP C CLOSE : no more
data to send. Each command message should have attached control information of type NDPCom-
mand. For example, the command message NDP C OPEN ACTIVE requires this control informa-
tion to be attached: connId, localAddr, locarPrt, remoteAddr, remotePrt and numPacketsToSend.
In Figure 5, NdpSinkApp can open a local port by sending a NDP C PASSIVE OPEN to the NDP
layer with control information that contains the local address and port. NdpBasicClientApp opens a
connection to a remote server by sending a NDP C OPEN ACTIVE command to the NDP layer.
NDP layer.The NDP module creates an NDPConnection object upon receiving either an active
or passive open command from an NDP application. The main message kinds that the application
receives from the NDP layer are: NDP I ESTABLISHED : connection established, NDP I DATA:
data packet received and NDP I PEER CLOSED : FIN flag received from remote NDP. The NDP
module and the NDP applications implement NDP operations (as discussed in §4) as follows:

1. The NDP sender performs the following operations (see Figure 5):

• creates the sendQueue for the data to be sent: NDPMSgBasedSendQueue::init(data),
• sends the initial window of data packets with SYN flag: sendInitialWindow(),
• precesses received packet (can be ACK, NACK or PULL) from the receiver: NDPConnec-

tion::process RCV Pkt(ndpPkt). The sender takes one of the following actions:

– frees acknowledged data packet: sendQueue->ackArrivedFree(ndpPkt),
– queues NACKed data packet for retransmission: nackArrivedMoveFront(ndpPkt),
– sends data packet if PULL request arrived: sendQueue->sendNdpPkt(),

• sets the FIN flag when sending the last data packet: ndpPkt->setFinFlag(true).

2. The NDP receiver performs the following operations (see Figure 5):

• establishes a connection when receiving a data packet with the SYN flag set: NDPConnec-
tion:processPktInListen(pktSynTrue),

• acknowledges a received data packet: sendAckPkt(seqNo),
• sends NACK when receiving header packet: sendAckPkt(seqNo),
• adds PULL packet to the PULL queue upon receiving either data or header packet: ad-

dRequestToPullQueue(),
• schedules a self message that is used to pace pull packets from the PULL queue: Sched-

uleAt(PACING TIME, pullTimerMsg)
• removes all pull packets when receiving the last data packet: pullQueue->removePulls()

Network layer. The IPv4 module performs IP encapsulation/decapsulation and routing of data-
grams. This is based on function call interface of the IPv4RoutingTable which we updated as discussed
in §3.
NICs. We use the available NIC modules (PPPInterface and EthernetInterface) that are provided
in the INET Framework.
NDP Switch. It contains two queues: (1) highPriorityQueue: which is used to enqueue Header,
ACK, NACK and PULL packets, and (2) dataQueue: which is used to enqueue data packets. NDP
switches trim packets when their dataQueue is full and insert the headers in the highPriorityQueue.
NDPSwitch:dequeue() is round robin (10:1 ratio) between the two queues.

5 Experimenting with the Simulation Framework

We developed a central scheduler node (centralSchedulerNdp3) to schedule NDP connections in a
FatTree topology (as shown in Figure 1). The main parameters in this node are shown in Figure 1b
and explained below:

3We have developed another scheduler: centralSchedulerTcp, which is used for TCP experiments and it has a
similar interface as the NDP scheduler. It is used to schedule TCP connections in a FatTree topology.

5

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

socket.connect(ACTIVE_OPEN)

connId

NDP Sender NDP Receiver

connId

NdpBasicClientApp module

NDP module

• conn->process_OPEN_ACTIVE(msg)

• NDPMSgBasedSendQueue::init(dataToSend)

• sendInitialWindow(): ndpPkt->setSynBit(true)

• NDPConnection::process_RCV_Pkt(ndpPkt)

• ndpPkt->getAckBit(true)

è sendQueue->ackArrivedFree(ndpPkt)

• ndpPkt->getNackBit(true)

è sendQueue->nackArrivedMoveFront(ndpPkt)

• ndpPkt->getIsPullPkt(true)

è sendQueue->sendNdpPkt()

• ndpPkt->setFinFlag(true)

• conn->process_OPEN_PASSIVE(msg)

• NDPConnection:processPktInListen(pktSynTrue)

• ndpPkt->getIsDataPkt(true)

è sendAckPkt(seqNo)

è addRequestToPullQueue()

• ndpPkt->getIsHeaderPkt(true)

è sendNackPkt(seqNo)

è addRequestToPullQueue()

• ScheduleAt(PACING_TIME, pullTimerMsg)

è pullQueue->sendNewPull()

• ndpPkt->finFlagTrue()

è pullQueue->removePulls()

NDP module

NdpSinkApp module

socket.bind(PASSIVE_OPEN)
listen

Figure 5: NDP implementation

• FatTreeSize. This is used to generate a k-ary FatTree topology (as described in §2)
• trafficMatrixType. The scheduler node can schedule either a permutation or random traffic

matrix (as explained in[17])
• arrivalRate. This is used to generate flow arrival times according to a Poisson process. This is

implemented by creating an exponential distribution (mean = 1/λ) based on the Poisson arrival
rate λ.

• flowSize. This is the size of the data (number of packets) that each created NdpBasicClientApp
is going to send to an NdpSinkApp.

• numShortFlows. This is the number of NDP connections that will be scheduled based on
the selected traffic matrix, e.g. scheduling 1000 flows means that there are 1000 different
NdpBasicClientApps communicate with 1000 NdpSinkApps.

• longFlowSize and percentLongFlowNodes. These parameters are used to generate background
traffic in the simulation. The background traffic can either run until all short flows will finish or
by assigning the size of the long flows to a large flow size. For example, percentLongFlowNodes
of 30% in a 10-FatTree (250 servers) topology means that there are 75 servers that are used
only to run background traffic.

• initialWindow and ndpSwitchQueueLength. These are used as described in Section refndp-
section).

5.1 NDP Experiments

Here, we present experimentation using the developed NDP model. We conducted four different
experiments4.
Experiment 1. We ran this experiment with the parameters that are shown in Figure 1b in a
6-FatTree (54 servers) where 15% of servers (8 servers) ran background load. The number of short
flows were 2000 and each flow had a size of 150KB. The results of this experiment are shown in Figure
6 (one seed was used). The developed model provides the ability to record and plot the following
measurements: goodput (Figure 6a), flow completion time (FCT) (Figure 6b), the number of received
header packets per flow (connection) (Figure 6c), the number of data sending applications at each
server (Figure 6d), the number of data receiving applications at each server (Figure 6d) and traffic
matrix plot (Figure 6e). We use OMNeT++’s scavetool command-line tool to process the results.

4Due to space limitations we will not discuss simulations with TCP. Some of these results can be found in [3].

6

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

500 1000 1500 2000
Rank of trasnport flow

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (G
bp

s) 150KB

Rank of transport flow

(a) Goodput

1 2 3 4
FCT (msec)

0

0.2

0.4

0.6

0.8

1

C
D

F

150KB

(b) FCT

0

2

4

6

#r
ec

ei
ve

d
he

ad
er

s

1950 1960 1970 1980 1990 2000
Rank of short flow

(c) Num. of received headers

0

20

40

60

#N
dp

B
as

ic
C

lie
nt

A
pp

1 11 21 31 41 51
Servers

ShortFlow Node LongFlow Node

(d) #created sender’s app.

0

20

40

60

#N
dp

Si
nk

A
pp

1 11 21 31 41 51
Servers

ShortFlow Node LongFlow Node

(e) #created receiver’s app.

0 5 10 15 20 25 30 35 40 45 50
Source Server

5
10
15
20
25
30
35
40
45
50
55
60

D
es

tin
at

io
n

Se
rv

er

36

41 43

50

54

43

46
47

44

41
55

40

37

51 42

34

45
45

38

46

46

39

46

39

41

4741

50

34

34

51

38 45
40

49
47

41

52

34

36

48

53

46 43

54

28

LongFlows ShortFlows

(f) Perm. traffic matrix

Figure 6: The results of running 2000 NDP short flows (150KB each) in a 6-FatTree (54 servers)

1 6 11 16 21 26 31 36
Core Swithces

0

20

40

60

80

 #
R

ec
ei

ve
d

Pa
ck

et
s

103

Core switches
(a) Per-flow ECMP

1 6 11 16 21 26 31 36
Core Swithces

0

20

40

60

80

 #
R

ec
ei

ve
d

Pa
ck

et
s

103

Core switches
(b) Per-packet ECMP

Figure 7: Per-flow vs per-packet ECMP in 12-FatTree (36 core switches) topology. Each colour in
each bar (12 colours) represents the number of received packets at each port (12-port switch)

These scripts can be found in the shell file (runNdpSimulation.sh) that we use to run the simulation
and generate several .csv files which are input to MATLAB scripts to produce the required figures 5.
The results are as expected; most flows achievedvery high goodput and low Flow Completion Times.

Experiment 2. In this experiment, we compare between per-flow and per-packet ECMP in a FatTree
topology. We have simulated the two protocols in a 12-FatTree (36 core switches) by running 5000
short flows (300KB each) and with arrival rate λ = 2000 (without introducing any background load).
The other parameters are as depicted in Figure 1b. Figure 7 illustrates the number of received packets
at each port of the 36 12-port core switches. It is obvious that per-packet ECMP provides better
load balancing than per-flow ECMP (as discussed in §3).
Experiment 3. In this experiment we test the performance of NDP when varying specific parame-
ters. A key parameter of NDP is the initial window of packets that a sender pushes to the network.
In Figure 8a, we observe that for very small values of the initial window, the goodput is very low and
the receiver’s downlink underutilised. As the window increases, utilisation approaches the maximum
available link capacity (for 16 packets). For larger values, the measured goodput is the same (full link
capacity). In Figure 8b, we show the goodput of NDP flows at different flow sizes (when λ = 2500).
Similarly, in Figure 8b, we obtain the goodput of 10000 flows (1.5MB each) at different λ values.

5The shell and MATLAB scripts are available in the GitHub repository, along with a demo.

7

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

0 2000 4000 6000 8000 10000
Rank of transport session

0

0.2

0.4

0.6

0.8

1
G

oo
dp

ut
 (

G
bp

s)

IW = 4
IW = 8
IW = 12
IW = 16
IW = 20
IW = 24

(a) Varying initial window

0 2000 4000 6000 8000 10000
Rank of transport session

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
G

bp
s)

NDP 150KB
NDP 300KB
NDP 900KB
NDP 1.5MB
NDP 3MB

(b) Varying flow size

0 2000 4000 6000 8000 10000
Rank of transport session

0

0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 (
G

bp
s)

 = 250
 = 500
 = 1000
 = 2000
 = 3000

(c) Varying arrival rate λ

Figure 8: NDP Goodput for 10000 flows in a 10-FatTree when varying specific parameter

2000 6000 10000
Rank of flow

0

2

4

6

FC
T(

m
s)

Load 50%
Load 80%

(a) Flow size (0, 100KB]

1000 2000 3000
Rank of flow

0

10

20

30

40

50

FC
T(

m
s)

Load 50%
Load 80%

(b) Flow size (100KB, 1MB]

Figure 9: FCT of web search workload flows (two ranges) at different background loads

Experiment 4. In the experiment, we use realistic web search workloads reported by data centre
operators to evaluate NDP [5]. We simulate two target loads of background traffic (0.5 and 0.8). We
generate 20000 flows, with λ = 2500. We report the flow completion time (FCT) of all flows (split in
two different ranges), as shown in Figure 9. NDP achieves low FCT.

6 Summary and future work

The proposed model is intended to be used to evaluate NDP and compare its performance with
existing models (e.g. TCP) in a FatTree data centre topology. The current implementation supports
most of NDP’s specifications. The current version of our NDP model does not support priority
pulling at the pull queue. As a future work, we plan to improve the NDP model by allowing priority
pacing in the pull queue for short flows. In addition, we aim at leveraging multiple priority queues
available in commodity switches to implement a Multiple Level Feedback Queue (MLFQ). Also, we
aim at evaluating NDP in Incast and Outcast scenarios and assess the provided fairness among
competing flows. Furthermore, we plan to build more OMNeT++/INET-based models that simulate
other modern data transport protocols for DCNs, such as DCTCP[5], MPTCP[23], DCQCN[27] and
PIAS[7].

References

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data center
network architecture. In Proc. of SIGCOMM, 2008.

[2] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic Flow Scheduling for Data Center Networks. In Proc. of USENIX, 2010.

[3] Mohammed Alasmar, George Parisis, and Jon Crowcroft. Polyraptor: Embracing path and data re-
dundancy in data centres for efficient data transport. In Proceedings of the ACM SIGCOMM 2018
Conference on Posters and Demos, 2018.

[4] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan, B. Prabhakar, and M. Seaman. Data
center transport mechanisms: Congestion control theory and ieee standardization. In Annual Allerton
Conference on Communication, Control, and Computing, 2008.

8

Evaluating Modern Data Centre Transport Protocols in OMNeT++ M.Alasmar and G.Parisis

[5] M Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data Center TCP (DCTCP). In SIGCOMM, 2010.

[6] Mohammad Alizadeh, S Yang, Milad Sharif, Sachin Katti, Nick McKeown, Balaji Prabhakar, and Scott
Shenker. pfabric: Minimal near-optimal datacenter transport. In Proc. of SIGCOMM, 2013.

[7] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. Information-agnostic flow
scheduling for commodity data centers. In In Proc. NSDI, USENIX, 2015.

[8] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, and David Walker. P4: Programming protocol-
independent packet processors. In ACM SIGCOMM, 2014.

[9] Yanpei Chen, Rean Griffith, David Zats, Anthony D. Joseph, and Randy Katz. Understanding TCP
incast and its implications for big data workloads. In Proc. of USENIX, 2012.

[10] T. Das and K. M. Sivalingam. Tcp improvements for data center networks. In 2013 Fifth International
Conference on Communication Systems and Networks (COMSNETS), 2013.

[11] A Dixit, P Prakash, Y C Hu, and R R Kompella. On the impact of packet spraying in data center
networks. In Proc. of INFOCOM, 2013.

[12] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
Rdma over commodity ethernet at scale. In SIGCOMM, 2016.

[13] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W. Moore, Gianni Antichi,
and Marcin Wójcik. Re-architecting datacenter networks and stacks for low latency and high perfor-
mance. In Proc. of SIGCOMM, 2017.

[14] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm Status. IETF, RFC 2992, 2000.

[15] Teerawat Issariyakul and Ekram Hossain. Introduction to Network Simulator NS2. Springer Publishing
Company, Incorporated, 2010.

[16] M. Kheirkhah, I. Wakeman, and G. Parisis. MMPTCP: A multipath transport protocol for data centers.
In Proc. of INFOCOM 2016, 2016.

[17] Morteza Kheirkhah. Mmptcp: a novel transport protocol for data centre networks[. In University of
Sussex, 2016.

[18] Morteza Kheirkhah, Ian Wakeman, and George Parisis. Multipath-TCP in ns-3. In WNS3, 2014.

[19] A. R. A. Kumar, S. V. Rao, and D. Goswami. Ns3 simulator for a study of data center networks. In
IEEE International Symposium on Parallel and Distributed Computing, 2013.

[20] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. Homa: A receiver-driven
low-latency transport protocol using network priorities. In In Proc. ACM SIGCOMM, 2018.

[21] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal, and B. Khan. Minimizing flow
completion times in data centers. In IEEE INFOCOM, 2013.

[22] Costin Raiciu, Sebastien Barre, Chris Pluntke, Adam Green, Damon Wischik, and Mark Handley. Im-
proving Datacenter Performance and Robustness with Multipath TCP. In SIGCOMM, 2011.

[23] Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon Wischik, and Mark
Handley. Data Center Networking with Multipath TCP. In Proc. of SIGCOMM. ACM, 2010.

[24] Bilel Ben Romdhanne. Large-scale network simulation over heterogeneous computing architecture. In
Telecom ParisTech, 2013.

[25] A. Varga. Omnet++ discrete event simulation. In System User Manual, 2006.

[26] H. Xu and B. Li. Repflow: Minimizing flow completion times with replicated flows in data centers. In
IEEE INFOCOM, 2014.

[27] Y Zhu, H Eran, Dan F, Chuanxiong G, Marina L, Ye Liron, J Padhye, Shachar R, Mohamad Haj Y,
and Ming Zhang. Congestion control for large-scale rdma deployments. In SIGCOMM, 2015.

9

	Introduction
	FatTree Topology
	Per-packet and per-flow ECMP
	A model of NDP in INET
	Experimenting with the Simulation Framework
	NDP Experiments

	Summary and future work

