
This space is reserved for the EPiC Series header, do not use it

SDN4CoRE: A Simulation Model for Software-Defined

Networking for Communication over Real-Time Ethernet

Timo Häckel, Philipp Meyer, Franz Korf, and Thomas C. Schmidt

Dept. Computer Science, Hamburg University of Applied Sciences, Germany
{timo.haeckel, philipp.meyer, franz.korf, t.schmidt}@haw-hamburg.de

Abstract

Ethernet has become the next standard for automotive and industrial automation net-
works. Standard extensions such as IEEE 802.1Q Time-Sensitive Networking (TSN) have
been proven to meet the real-time and robustness requirements of these environments. Aug-
menting the TSN switching by Software-Defined Networking functions promises additional
benefits: A programming option for TSN devices can add much value to the resilience,
security, and adaptivity of the environment. Network simulation allows to model highly
complex networks before assembly and is an essential process for the design and validation
of future networks. Still, a simulation environment that supports programmable real-time
networks is missing.

This paper fills the gap by sharing our simulation model for Software-Defined Network-
ing for Communication over Real-Time Ethernet (SDN4CoRE) and present initial results
in modeling programmable real-time networks. In a case study, we show that SDN4CoRE
can simulate complex programmable real-time networks and allows for testing and verifying
the programming of real-time devices.

1 Introduction

In recent years, Ethernet has emerged to become the next standard for automotive networks.
Complementary protocols such as IEEE 802.1Q Time-Sensitive Networking (TSN) have proven
to meet the real-time and robustness requirements of these environments. On the other hand,
the Software-Defined Networking (SDN) paradigm has revolutionized campus and data center
networks. Separating the control from the data plane of network devices at a central control
unit with global network knowledge enables simple and fast-forwarding at devices, while high-
level control applications can steer the entire network. SDN, though, cannot grant Quality-
of-Service (QoS) guarantees to the forwarding plane. First results from integrating the SDN
paradigm with TSN standards are promising [2]. A programming option for TSN devices can
add much value to the resilience, security, and adaptivity of the environment. Although the
application of the combination of TSN and SDN is expected to expand with the introduction of
5G and the Internet of Things, we focus on the use case in automotive networks in this work.

Network simulation allows highly complex networks to be modeled before the assembly.
This is an important technique for the design and validation of future networks and therefore

http://www.haw-hamburg.de/ti-i
http://www.haw-hamburg.de/ti-i
mailto:timo.haeckel@haw-hamburg.de
mailto:philipp.meyer@haw-hamburg.de
mailto:franz.korf@haw-hamburg.de
mailto:t.schmidt@haw-hamburg.de


SDN4CoRE Simulation Model Häckel, Meyer, Korf and Schmidt

remains an active research topic. The discrete event simulation platform OMNeT++ suits well
as a simulation toolchain for automotive communication, as shown in prior work [10].

In this paper, we present our simulation model for Software-Defined Networking for Com-
munication over Real-Time Ethernet (SDN4CoRE) and describe the first results in modeling
programmable real-time networks. SDN4CoRE is built on top of the INET framework and
uses the CoRE4INET simulation models developed in previous work [7]. To make the network
devices programmable, we implement client and server modules for the NetConf protocol and
integrate the OpenFlowOMNeTSuite [4] for OpenFlow protocol modules. In our case study, we
show how our model can be used to test and evaluate configuration mechanisms in real-time
networks.

The remainder of this paper is structured as follows. Section 2 provides background knowl-
edge and related work. The concept of programming options for the different real-time Eth-
ernet components is discussed in Section 3. In Section 4, we describe the components of the
SDN4CoRE simulation models, followed by a case study in Section 5. Finally, Section 6 con-
cludes this work with an outlook on future work.

2 Background and Related Work

Today, more and more software components get deployed in automotive networks, demanding
a steady increase in communication bandwidth and timing guarantees. Ethernet has emerged
as the next high-bandwidth communication technology for in-car networks. There have been
several attempts to introduce support for real-time requirements in Ethernet networks. Time-
Triggered Ethernet (AS6802) provides a synchronous Time Division Multiple Access (TDMA)
implementation, as well as rate-constrained traffic classes for Ethernet. Audio Video Bridg-
ing (AVB) defines dynamic bandwidth reservation mechanisms for streams and traffic shapers
to guarantee maximum latency. AVBs successor Time-Sensitive Networking (IEEE 802.1Q-
2018 [3]) is a set of standards which are defined by the TSN task group of the IEEE. These
standards extend Ethernet to concurrently forward real-time and Cross-Traffic (CT). It sup-
ports both synchronous TDMA traffic and asynchronous bandwidth reservation for streams.
CoRE4INET [7] (Communication over Real-time Ethernet for INET) is a suite of real-time
Ethernet simulation models developed over the past decade. Currently, CoRE4INET supports
the AS6802 protocol suite, traffic shapers of Ethernet AVB, and implementations of IEEE
802.1Q, as well as models to map IP traffic to real-time traffic classes.

As communication requirements increase, so does the complexity and network adaptabil-
ity requirements. The SDN paradigm promises to solve this problem by moving the control
logic out of the network devices into a central control unit [6]. Kreutz et al. discuss the
paradigms and concepts of SDN in their comprehensive survey [5]. The network logic is split
into three layers: (1) The data plane on which each switch forwards packets according to the
flow rules, (2) the control plane on which each switch is connected to a logically (not necessarily
physically) centralized controller that manages the forwarding logic, and (3) the management
plane on which network administrators manage the controller applications. The communica-
tion between the SDN controller and the switches is specified in the OpenFlow standard of the
ONF [9]. The OpenFlowOmnetSuite – originally developed at the University of Würzburg –
is an OMNeT++ simulation model that implements a concept of SDN with OpenFlow [4]. It
provides the OpenFlow standard message types, implementations of forwarding devices, a SDN
controller implementation, and interfaces for controller applications.

In TSN, configuration of various components is enabled through the NetConf protocol
(RFC 6241 [1]). It specifies a management architecture in which the managed unit contains a

2



SDN4CoRE Simulation Model Häckel, Meyer, Korf and Schmidt

NetConf server, and the administrative unit connects through a NetConf client. On the server-
side, configurations are stored in configuration data stores. NetConf provides Remote Procedure
Call (RPC) operations such as get-config and edit-config, which allow the client to request or
edit the configuration data stores at the server. SDN4CoRE provides a base implementation of
the NetConf protocol, including client, server, data stores, and operations.

Rather little work has been done to combine the concepts of TSN and SDN. Nayak et al.
mention the term ”Time-Sensitive Software-Defined Network” in 2016 for the first time and
show a concept of a programmable scheduler [8]. In previous work, we introduced a concept
of software-defined networks supporting time-sensitive in-vehicle communication [2] along with
a switching methodology for TSN streams, the programming of the bandwidth reservation via
the Stream Reservation Protocol (SRP), and a detailed analysis.

To the best of our knowledge, no simulation environment supports programmable real-time
networks. Making the modules of CoRE4INET programmable allows using other available
simulation models as well, such as CAN bus signals and gateways to model realistic in-vehicular
communication [7].

3 Programmable Real-Time Ethernet Communication

Introducing a programming option for real-time Ethernet devices that improves resilience, se-
curity, and adaptability of the environment requires changes on all three layers of the SDN
concept: Forwarding devices must provide a programming interface using open standards, con-
trol functionality for real-time must be extracted from the switches and integrated into the SDN
controller, and controller applications must be able to program and manage real-time devices.

In real-time Ethernet and SDN, switches contain additional modules to extend the func-
tionality of regular switching hardware, which is depicted in Figure 1. One of the additional
modules introduced in some real-time communication is an ingress control module. In TSN this
is the “Per-Stream Filtering and Policing” module. It is used to filter incoming Ethernet frames
for controlling bandwidth and arrival times. A similar module is used at the egress of a switch
and implements in particular priority queuing, real-time scheduling and traffic shaping. In TSN
this module is called “Enhancements for Scheduled Traffic” and specified in IEEE 802.1Qbv. It
uses a Gate Control List (GCL) to indicate, which 802.1Q priorities are allowed to pass through
a particular port at a specific time. The scheduling information is stored in the “Schedule” table
and needs a precisely synchronized time at all network devices, which is managed by the “Time
Sync” module. For stream-based bandwidth reservation, the “SR Table” module contains all
registered talkers and listeners for time-sensitive streams.

In a SDN switch, the forwarding module of a standard Ethernet switch is replaced by a
flow-based forwarding module that performs flow table lookups based on packet match rules.
The SDN controller performs tasks such as topology discovery, MAC-Address learning, and
route determination. The programming interface between the switch and the SDN controller is
an open southbound API that implements standard protocols such as NetConf or OpenFlow.
Additional network applications can be executed on top of the controller.

In programmable real-time networks, flow-based operations require merging the modules of
the real-time and the SDN switching components. To ensure that the real-time capabilities
are not altered in any way, the ingress and egress control modules must remain unchanged by
the additional programming option. When data packets arrive, the ingress control manages
the timing and applies stream-based filters. After that, the packet is matched against the flow
table, and the discovered actions are executed. The packet then gets forwarded to the correct
egress ports, where the egress control manages the timing and shaping of the outgoing traffic. If

3



SDN4CoRE Simulation Model Häckel, Meyer, Korf and Schmidt

Ingress 
Ports

Per-Stream 
Filtering and 

Policing

Flow-based 
Forwarding

Enhancements for 
Scheduled Traffic

Egress 
Ports

SR TableFlow TableSchedule

Time SyncTime Sync

Control Plane

SDN Controller

Forwarding Plane

Open Southbound API

Management Plane

Network Applications

Open Northbound API

Programming Interface

TSNLegacy switch SDNLegend:

Figure 1: Components of a programmable real-time switch.

no corresponding forwarding rule exists, the packet is dropped by default, while most controller
applications insert the default rule to forward the packet to the controller.

SDN controller applications manage the forwarding and store information for the control
functionality of the SDN devices. This usually includes features such as neighbor discovery
or source MAC address learning. Because many real-time Ethernet protocols use multicast
MAC addresses to transfer data to a group of receivers, the controller applications must be
able to learn and control multicast MAC addresses. AVB and TSN use the SRP to announce
the sender (talker) and receivers (listener) of the multicast groups. Therefore, the controller
application must receive and understand the SRP packets. When a forwarding device receives
a SRP message, it is forwarded directly to the SDN controller via the OpenFlow protocol. The
controller application then registers the talker or listener in its SR table and sends the SRP
message back to the switch via the OpenFlow protocol. The switch updates its SR table and
forwards the message to the next hop. In this way, the ‘talker advertise’ and ‘listener ready’
messages are spread across the network, and each switch goes through the same process until
the messages reach the clients. When a new client subscribes to a stream with a ‘listener ready’
message, a forwarding rule for the TSN stream is inserted in the switches flow table before the
‘listener ready’ command is sent back to the switch and forwarded along the path. In a future
release, the modules handling the SRP protocol could be removed from the switches to simplify
them. The controller could insert a match rule for the SRP messages to receive them directly.
Subsequently, the SRP tables could then be updated directly via the NetConf protocol.

Besides the dynamic stream reservation, the controller must be able to control the scheduled
traffic. Therefore, the switch must provide a specific NetConf data store to control the schedul-
ing tables. In this work, we implemented such a data store for the gate control of 802.1Qbv.
To change the GCL, the controller sends an ‘edit config’ message containing updates or a full
configuration for the active GCL. The NetConf server module forwards those messages to the
data store which then updates the GCL in the corresponding port. In a future release, addi-
tional modules may be added to the data store. For example, the controller could program the
802.1Qci filters, gates, and meters. On the other hand, algorithms to calculate a new schedule

4



SDN4CoRE Simulation Model Häckel, Meyer, Korf and Schmidt

Figure 2: OMNeT++ Module of an OpenFlow and NetConf capable switch.

for the entire network could be implemented to adapt the schedules dynamically.

4 SDN4CoRE Simulation Model

The SDN4CoRE simulation module is based on the discrete event simulator OMNeT++
(https://omnetpp.org/) and the INET framework (https://inet.omnetpp.org/). It uses
the CoRE4INET [11] simulation model for real-time Ethernet communication and extends some
modules to be programmable. On the other hand, SDN4CoRE uses the OpenFlow protocol
implemented in the OpenFlowOMNeTSuite [4]. We forked and extended this suite to harmo-
nize with our models. For example, we introduced interface modules to enhance flexibility and
modularity and created a new flow table structure.

Figure 2 shows the general module structure of a forwarding device that is capable of
OpenFlow and NetConf. The eth0 port connects the switch to the controller. The NetConf
server module is connected to this port via TCP, but can also be connected to other protocols,
e.g. for security reasons. It handles the NetConf protocol and extracts RPCs to forward them
to the data store manager, which in turn applies the command on the proper data store and
creates the response. The OpenFlow protocol client is implemented in the relay unit and also
connected via TCP. Besides, the relay unit performs the flow table lookup in the flow tables
and forwards incoming data packets to the correct Ethernet port. For the etherMAC interfaces,
we provide several real-time Ethernet port implementations that control the ingress and egress
timings. Some of them require the Time Synchronization and Scheduler modules, which also
contribute a realistic device clock. The stream reservation table and protocol modules are
needed for AVB/TSN streams. The switch implementation also provides the option to import
or export a launch configuration for all modules and tables.

The SDN controller module is based on a standard host provided by the INET framework
so that other applications can run smoothly. The OpenFlow controller module from the Open-
FlowOMNeTSuite and the NetConf client module connect to the forwarding devices via TCP.
The NetConf client module handles connectivity to the forwarding devices and forwards RPC
requests and replies to the corresponding NetConf application or server. We include a base
implementation for NetConf and OpenFlow applications as well as specific implementation for
real-time controllers. With this, it is possible to create controller apps that use NetConf and
OpenFlow simultaneously. The controller also provides the ability to import or export a launch
configuration.

5

https://omnetpp.org/
https://inet.omnetpp.org/


SDN4CoRE Simulation Model Häckel, Meyer, Korf and Schmidt

SDN Controller

Switch 1 (S1)

Sink

Switch 2 (S2)

Host 1

Host 2

Host 3

Host 4

Priority: 1
Cycle: uniform (0.2ms-0.8ms)
Framesize: 1522 Byte

Priority: 2
Cycle: 1ms
Framesize: 1522 Byte

Priority: 6
Cycle: 1ms
Framesize: 122 Byte

Priority: 7
Cycle: 1ms (Starts at 4s)
Framesize: 122 Byte

Gate Control List (t=0s):
C,C,C,C,C,C,o,o: 0.015 ms
o,o,o,o,o,o,C,C: 0.860 ms
C,C,C,C,C,C,C,C: 0.125 ms

Gate Control List (t=0s):
C,C,C,C,C,C,o,o: 0.015 ms
o,o,o,o,o,o,C,C: 0.860 ms
C,C,C,C,C,C,C,C: 0.125 ms

1 Gbit/s

100 Mbit/s

Figure 3: Network topology and device configurations at startup.

5 Case Study

Our results in previous work show that SDN control overhead can be added to TSN streams
without a delay penalty, provided protocols are mapped properly [2]. In this work, we analyze
the programmability of the GCL in switches supporting IEEE 802.1Qbv. Since this article
focuses on programming rather than calculating correct schedules, we have disabled clock jitter
and time synchronization for all devices to simplify the simulation and calculation of schedules.

The network topology of our case study consists of four hosts sending messages to one sink
via two switches in the presence of one SDN controller as shown in Figure 3. Each host sends
one periodic IEEE 802.1Q message, so the traffic shaping is controlled by the switches in the
network. These messages have a fixed priority, frame size, and cycle. As an exception, host
1 sends low priority messages with high frequency that varies according to gaussian normal
distribution. To introduce a change in high priority traffic, host 4 starts transmitting frames
with the highest priority after 4 seconds. The two switches are NetConf and OpenFlow capable.
The output on each switch port is controlled by an 802.1Qbv module, which contains gates for
each 802.1Q priority that can either be closed (C) or opened (O) at a certain point in time.
This information is stored in the GCL that can be programmed at run time using the NetConf
protocol. In this evaluation we use three phases for this list: A time slot Tred, closing all gates
to ensure that the transmission of previous frames has ended before switching to the green
phase; A time window Tgreen, for high priority traffic with priorities 6-7; And a window Tyellow,
for all low priority traffic of priorities 0-5.

The cycle time of the schedule is equivalent to the largest cycle time of the high priority
messages, which is 1 ms in our scenario. We calculated the phases and added a safety margin:

Tred = TMaxFrame
tx + Tmargin =

1, 522Byte

100Mbit/s
+ 5µs = 121, 76µs+ 5µs ≈ 125µs (1)

Tgreen = THost3
tx + Tmargin =

122Byte

100Mbit/s
+ 5µs = 9.76µs+ 5µs ≈ 15µs (2)

Tyellow = Tcycle − Tgreen − Tred = 1ms− 15µs− 125µs = 860µs (3)

Figure 4 is a graph showing the changes in end-to-end latency during 10s simulation time.
These changes are introduced by updates to the configuration of the GCL depicted in Table 1
and changes in the traffic pattern.

At the beginning of the simulation all devices are configured as shown in Figure 3. The high
priority packets from host 3 to the sink have a constant delay of 1.03 ms (see Figure 4). In the

6



SDN4CoRE Simulation Model Häckel, Meyer, Korf and Schmidt

0 2 4 6 8 10
0

0.5

1

Simulation time [s]

E
n

d
-t

o
-e

n
d

la
te

n
cy

[m
s]

Host 3 → Sink (PCP 6)

Host 4 → Sink (PCP 7)

Figure 4: The end-to-end latency of high prior-
ity data flows from the host to the sink. Host 4
starts sending after 4 s simulation time.

t(s) Dev Gate Control List (µs)

0-2 S1 G: 15 ; Y: 860 ; R: 125
S2 G: 15 ; Y: 860 ; R: 125

2-4 S1 R: 10 ; G: 15 ; Y: 860 ; R: 115
S2 R: 20 ; G: 15 ; Y: 860 ; R: 105

4-6 S1 R: 10 ; G: 15 ; Y: 860 ; R: 115
S2 R: 20 ; G: 15 ; Y: 860 ; R: 105

6-8 S1 R: 10 ; G: 30 ; Y: 845 ; R: 115
S2 R: 20 ; G: 15 ; Y: 860 ; R: 105

8-10 S1 R: 10 ; G: 30 ; Y: 845 ; R: 115
S2 R: 20 ; G: 30 ; Y: 845 ; R: 105

Table 1: Changes to the 802.1Qbv Gate Control
List of the switches (S1 and S2) with the three
phases green (G), yellow (Y) and red (R).

simulation, we can see that this delay is introduced at the second switch, where the packets
miss their time slot because of the transmission time of 20µs over two links. To eliminate this
delay, the controller updates the GCL of both forwarding devices at 2s simulation time. The
red phase is split into two parts, one at the beginning of the cycle and one at the end. The
red phase at the beginning is exactly the transmission time of the high priority packet to the
device. For switch 1 this is the transmission delay of 10µs from host 3 to switch 1. For switch 2
this phase has to be shifted another 10µs for the transmission from switch 1 to switch 2. This
update reduces the end-to-end latency to the expected value of 30µs.

At 4s simulation time, host 4 starts sending frames with the same size and cycle but a higher
priority than those of host 3. Therefore, the transmission time of high priority frames at the
switches doubles. The packets of host 4 have the expected end-to-end latency of 30µs. Those
of host 3 stay in time for their slot at switch 1 because of the safety margin of 5µs. At switch
2, however, they miss their time slot and need to wait for one cycle. To solve this time conflict,
the controller updates the GCLs at 6 s simulation time, but only for switch 1 to simulate a
failure in the configuration of switch 2. Since the update was unsuccessful on switch 2, the end-
to-end latency remains unchanged. Although the configuration of switch 2 was unsuccessful,
the update of the configuration of switch 1 was still performed. In very sensitive environments
this can lead to dangerous behavior of the network. Additional mechanisms are required to
ensure that changes to the schedule are executed at the same time and are consistent across the
network. At 8s simulation time, the controller performs the update of switch 2. This reduces
the end-to-end latency of host 3 as expected.

This initial evaluation shows how the programming of schedules in the network can in-
crease the flexibility and performance of the system. On the other hand, it indicates that
re-configuration of time slots should be used with care during runtime. Configuring multiple
devices might lead to an inconsistent state of the network and loss or delay of critical messages.

6 Conclusions and Future Work

In this paper, we shared our simulation model SDN4CoRE and described in detail how to
make real-time communication programmable with NetConf and OpenFlow. In a case study,
we demonstrated the use of our model for testing and evaluating configuration mechanisms in

7



SDN4CoRE Simulation Model Häckel, Meyer, Korf and Schmidt

real-time networks. An initial assessment indicates that re-configuration of time slots should be
used with care during runtime, and additional mechanisms are required to ensure a consistent
state across the network.

In future work, we plan to further extend the programmability of the CoRE simulation
models, for example, with the recently published implementation of IEEE 802.1Qci modules.
The evaluation of control plane concepts for automotive networks is one of our next tasks.

The SDN4CoRE simulation model, including its original fork of the OpenFlowOMNeTSuite,
as well as all other simulation models and analyses tools, are published as open-source on our
GitHub page at https://github.com/CoRE-RG/.

Acknowledgments

This work is funded by the Federal Ministry of Education and Research of Germany (BMBF)
within the SecVI project.

References

[1] Rob Enns, Martin Björklund, Andy Bierman, and Jürgen Schönwälder. Network Configuration
Protocol (NETCONF). RFC 6241, IETF, June 2011.

[2] Timo Häckel, Philipp Meyer, Franz Korf, and Thomas C. Schmidt. Software-Defined Networks
Supporting Time-Sensitive In-Vehicular Communication. In Proc. of the IEEE 89th Vehicular
Technology Conference: VTC2019-Spring, Piscataway, NJ, USA, April 2019. IEEE Press.

[3] IEEE. IEEE Standard for Local and Metropolitan Area Network–Bridges and Bridged Networks.
IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014), pages 1–1993, July 2018.

[4] Dominik Klein and Michael Jarschel. An OpenFlow extension for the OMNeT++ INET frame-
work. In Proceedings of the 6th International ICST Conference on Simulation Tools and Tech-
niques, pages 322–329. ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2013.

[5] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig.
Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE, 103(1):14–76,
Jan 2015.

[6] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rex-
ford, Scott Shenker, and Jonathan Turner. OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[7] Philipp Meyer, Franz Korf, Till Steinbach, and Thomas C Schmidt. Simulation of Mixed Critical
In-vehicular Networks. In Recent Advances in Network Simulation, pages 317–345. Springer, 2019.

[8] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. Time-sensitive Software-defined Network
(TSSDN) for Real-time Applications. In Proceedings of the 24th International Conference on Real-
Time Networks and Systems, RTNS ’16, pages 193–202, New York, NY, USA, 2016. ACM.

[9] Open Networking Foundation. OpenFlow Switch Specification. Standard ONF TS-025, ONF,
2015.

[10] Till Steinbach, Hermand Dieumo Kenfack, Franz Korf, and Thomas C. Schmidt. An Extension
of the OMNeT++ INET Framework for Simulating Real-time Ethernet with High Accuracy. In
SIMUTools 2011 – 4th International OMNeT++ Workshop, pages 375–382, New York, USA,
March 21-25 2011. ACM DL.

[11] Till Steinbach, Philipp Meyer, Stefan Buschmann, and Franz Korf. Extending omnet++ towards
a platform for the design of future in-vehicle network architectures. In Anna Foerster, Vladimı́r
Vesely, Antonio Virdis, and Michael Kirsche, editors, Proceedings of the 3rd OMNeT++ Commu-
nity Summit, Brno, Czech Republic, September 15, 2016. ArXiv e-prints, September 2016.

8

https://github.com/CoRE-RG/

	Introduction
	Background and Related Work
	Programmable Real-Time Ethernet Communication 
	SDN4CoRE Simulation Model
	Case Study
	Conclusions and Future Work

