

OBS network model for OMNeT++: A performance evaluation

F. Espina, J. Armendariz, N. Garcia, D. Morato, M. Izal, E. Magaña felix.espina@unavarra.es

Introduction to the problem

Researching on transport of multimedia contents on OBS

Testbeds?

- There are few testbeds, no one accessible to us
- We have not enough financial resources to develop a testbed

Simulations

- There are implementations?? Some
- They are accessible?? Few
- Are they good enough for us?? No

Introduction to the problem

- © Conclusion: we have to develop our OBS simulator
- Before using the simulator...
- how good is it?

A PERFORMANCE EVALUATION REQUIRED

- Introduction to optical technologies: OCS-OPS-OBS
- Which simulation platform?
- OBS network model
 - Edge Node
 - Core Node
- The performance evaluation
 - Scenario and methodology
 - The effect of number of wavelengths on the OBS links
 - Comparison with INET
- Conclusions

- Introduction to optical technologies: OCS-OPS-OBS
- Which simulation platform?
- OBS network model
 - Edge Node
 - Core Node
- The performance evaluation
 - Scenario and methodology
 - The effect of number of wavelengths on the OBS links
 - Comparison with INET
- Conclusions

OCS: Optical Circuit-Switching

- Optical circuits are established (static or on demand) between routers
- Core nodes handle passively many wavelengths
 no electronic limitations

Little flexibility:

- Limited traffic adaptation
- Poor bandwidth utilization for bursty traffic

- OPS: Optical Packet Switching
 - Analogous to the electronic switching of packets => ideal solution
 - Today OPS has some serious technological limitations:
 - Optical queueing is very difficult. There is not optical memory, only delay lines
 - Switching time of not very expensive optical switches similar to duration of optical package (millisecond – microsecond)
 - Open question: Will make sense OBS when we can implement OPS?

OBS: Optical Burst Switching

- OCS and OPS intermediate solution:
 - Establish a circuit only for duration of a set of packets (burst)
- OBS Pros:
 - Flexible backbone with high bandwidth
 - Feasible technology (no optical buffers needed)
- OBS Cons:
 - Introduces **latency** (waiting to gather packets for a burst)
 - Losses come in bursts

- Packets buffered at ingress edge nodes based on Forward Equivalence Classes (FEC)
- OBS FEC: burstifiers

 A Burst Control Packet (BCP) is created and sent an offset time before the burst

- BCP is electronically switched and processed at every backbone node
- Processed: decide the appropriate forwarding path for the associated optical burst

- Generally OBS uses one-way signalling schemes initiated by source:
 - Bursts are sent without waiting for acknowledge.
 - Bursts may compete for the same resources in core nodes
 - Burst lost if...
 - simultaneous burst reservations at a core node output port EXCEEDS the available number of wavelengths
 - BCP and its burst are too near in time =>
 no time to process BCP and switch burst

- Introduction to optical technologies: OCS-OPS-OBS
- Which simulation platform?
- OBS network model
 - Edge Node
 - Core Node
- The performance evaluation
 - Scenario and methodology
 - The effect of number of wavelengths on the OBS links
 - Comparison with INET
- Conclusions

Which simulation platform?

- OMNeT++ (v3.3)
 - Do I need to explain its advantages? ;=)
- Other options:
 - OPNET:
 - (very) expensive annual license: give access to source of models, but not to source of the simulator's kernel
 - Always fixed topology and stored in proprietary binary format => difficult to use via scripts

Which simulation platform?

- NS-2:
 - Without separation between kernel and simulation models
 - It's not a simulation platform
 - Lacks many tools and infrastructure components that OMNeT++ has:
 - support for hierarchical models
 - graphical user interface (GUI) simulation environment
 - separation between models and experiments
 - graphical tools for analysis
 - multiple simulation random number generator (RNG) streams
 - In Windows it loses some functionality and you must compile and use it through Cygwin

- Introduction to optical technologies: OCS-OPS-OBS
- Which simulation platform?
- OBS network model
 - Edge Node
 - Core Node
- The performance evaluation
 - Scenario and methodology
 - The effect of number of wavelengths on the OBS links
 - Comparison with INET
- Conclusions

OBS network model

- There are 2 general models:
 - Network with complete nodes:
 - All introduce (or remove) traffic
 - All have traffic in transit
 - Networks with separate nodes:
 - **Edge Nodes**: capacity to introduce (or remove) traffic in the OBS backbone
 - © Core Nodes: only optical traffic in transit

- Introduction to optical technologies: OCS-OPS-OBS
- Which simulation platform?
- OBS network model
 - Edge Node
 - Core Node
- The performance evaluation
 - Scenario and methodology
 - The effect of number of wavelengths on the OBS links
 - Comparison with INET
- Conclusions

Modelled as a router (INET basic router module) with an OBS interface

- Acts as an ingress node when it introduces traffic in the OBS network
 - assembler module:
 - assemble the incoming traffic into bursts
 - schedule the transmission of the BCP + bursts into the output channels
- Acts as an egress node when it removes traffic from the OBS network.
 - o disassembler module:
 - performs the inverse operation
 break down bursts into packets
 and forward them

- Incoming traffic aggregated (bursts) depending on the optical destination
- This aggregation takes place in burstifiers
- o dispatcher decides in which burstifiers to store

the incoming traffic

- At least one burstifier per optical destination (egress)
- There could be more for differentiate traffic:
 - Ex: QoS

- Implementation supports the most common schemes:
 - Timer
 - Size
 - Packet number thresholds
 - And the mixture of these schemes.
- Adding a new scheme => only changing the simple module burstifier

- Optical forwarding: "label optical switching" type schema:
 - Each burst has a label
 - Core nodes use label, input port and wavelength as forwarding parameters
 - The label may change at each hop
 - burstifier that generates the burst puts its label (configurable) as the initial label of burst

- sender == OBS link level
 - It has been implemented as a queue in which to store the generated bursts until their transmission
 - Size of queue configurable for each simulation and edge node:
 - Bits
 - number of bursts
 - When a burst cannot fit in the queue, it is discarded

- Used the most popular and basic OBS scheduler: Horizon or LAUC
 - Burst generated => closest time when any of the wavelengths is free is calculated
 - Transmission is planned for that moment
 - wavelength's horizon updated
 - © Core node needs to process BCP before the burst arrives => BCP is sent some offset time before:
 - offset: maximum and minimum limits
 - Initially, BCP is planned to be sent with the maximum offset
 - If BCP and burst are close than minimum offset separation => BCP and burst dropped

- Introduction to optical technologies: OCS-OPS-OBS
- Which simulation platform?
- OBS network model
 - Edge Node
 - Core Node
- The performance evaluation
 - Scenario and methodology
 - The effect of number of wavelengths on the OBS links
 - Comparison with INET
- Conclusions

Core Node

Responsible of:

BCPs processing

bursts switching without electro-optical conversion

mechanism of contention resolution between

bursts

Currently, it assumes that it has unlimited wavelength converters

Core Node

- OBS signalling typically:
 - made out of band:
 - BCP uses an unique wavelength different from wavelengths for bursts
 - o and one-way initiated by the source:
 - bursts sent without waiting for confirmation of the attempt to reserve a path
- © Current implementation uses JET scheme
 - BCP must indicate when the burst is expected to arrive and its duration
 - Channel reservation is delayed to the estimated arrival of the burst
- Different signalling schemes have been proposed
 - Only need to change the simple module
 ControlUnit

Core Node

© ControlUnit associates:

- each input port, wavelength and label
- output ports, wavelengths and labels that can use or are valid

Function mode:

- BCP arrivals => select the valid wavelength with horizon closer to and smaller than the estimated arrival time of the burst
- Schedule the Optical Cross-Connect to switch the input wavelength with the selected output wavelength at the arrival instant and to undo once the burst crosses the switching matrix.
- If there is no free wavelength => discarded BCP and burst

- Introduction to optical technologies: OCS-OPS-OBS
- Which simulation platform?
- OBS network model
 - Edge Node
 - Core Node
- The performance evaluation
 - Scenario and methodology
 - The effect of number of wavelengths on the OBS links
 - Comparison with INET
- Conclusions

The performance evaluation

- © Global performance with other OBS simulator not much useful => depends on:
 - quality of the OBS implementations
 - but also on the different performance of simulation frameworks
- Performance is evaluated against a similar model for OMNeT++
 - both share a common ground (OMNeT++)
 - o difference is due to the code
- The comparing selected model: the well known INET model

- Introduction to optical technologies: OCS-OPS-OBS
- Which simulation platform?
- OBS network model
 - Edge Node
 - Core Node
- The performance evaluation
 - Scenario and methodology
 - The effect of number of wavelengths on the OBS links
 - Comparison with INET
- Conclusions

Scenario and methodology

OBS network scenario:

 Analogue for INET simulations with Ethernet switching technology

Scenario and methodology

- 3 performance parameters measured:
 - Duration of the simulation
 - Number of events of the simulation
 - Memory used by the simulation
 - measured recording every second the pmap command output
- Show if OBS model has a serious penalty
- Simulated time: 1 minute
 - stationary state reached in less than 1 simulated second
- Machine used: an Intel Core 2 Duo E6570
 (@2.66GHz) with 3GiB of RAM and Ubuntu 8.04

Scenario and methodology

- OBS: timer-based burstifiers
- Input traffic:
 - Output
 UDP from all to all hosts
 - Fixed packet lengths
 - Poisson distribution arrivals
 - chosen to create a preconfigured load at the central link
- Links:
 - Ethernet: 10Gbps Ethernet links
 - OBS, 2 approaches:
 - Only one data wavelength (10Gbps) per link
 - 10 data wavelengths (1Gbps) per link

- Introduction to optical technologies: OCS-OPS-OBS
- Which simulation platform?
- OBS network model
 - Edge Node
 - Core Node
- The performance evaluation
 - Scenario and methodology
 - The effect of number of wavelengths on the OBS links
 - Comparison with INET
- Conclusions

2010-03-19

upna The effect of number of wavelengths on the OBS links

- The same link capacity can be obtained using:
 - 1 wavelength of that bitrate
 - K wavelengths of bitrate/K
- Same technology... but maybe,
 - **one more expensive** (in events, time, etc.) than other??

Events (100M)

The effect of number of wavelengths on the OBS links

Events vs simulated time, with different wavelengths, timer and load

- Events increases linearly with load <=> number of packets increases linearly
 - Timer increases =>
 number of bursts reduced
 (more packets per burst)
 => less events
- © Events increase with number of wavelengths

upna The effect of number of wavelengths on the OBS links

Processing time vs load, with different 0 wavelengths and timer

Processing time grows 0 linearly with the load

- Processing time also **grows** 0 with the number of wavelengths
 - More events usually implies more time and more memory

0

Memory usage (MB)

upna The effect of number of wavelengths on the OBS links

Memory usage vs load, with different 0 wavelengths, timer and load

- **Memory grows with the load**: more load => more scheduled events => more memory
- **Timer increases =>** 0 number of packets inside burst and time spend inside it grows => more memory
- Memory also grows with number of wavelengths

upna The effect of number of wavelengths on the OBS links

Conclusion:

Simulation with **10 wavelengths at 1Gbps** costs more in events, simulation duration and memory used than a simulation with 1 wavelength at 10Gbps and the same load and timer

- Introduction to optical technologies: OCS-OPS-OBS
- Which simulation platform?
- OBS network model
 - Edge Node
 - Core Node
- The performance evaluation
 - Scenario and methodology
 - The effect of number of wavelengths on the OBS links
 - © Comparison with INET
- Conclusions

Comparison with INET

Events vs simulated time, with different wavelengths, timer and load

- INET simulation have at least the same number of events
- In OBS more packets are inside each burst if
 - Number of wavelengths decreases
 - timer increases
 - or load increases
- => less forwarding work =>
 less events
 - for low load this is not significative

Comparison with INET

Processing time vs load, with different wavelengths and timer

- For small load INET is as fast as OBS with 1 wavelength and faster than OBS with 10 wavelengths
- For moderate to high load INET is always worse => number of events to manage is always greater

Memory usage (MB)

Comparison with INET

Memory usage vs load, with different 0 wavelengths, timer and load

- The **INET** model uses always **less memory** than the OBS model
 - In OBS, packets travel in groups => spend more time inside simulator => increase the memory usage

- Introduction to optical technologies: OCS-OPS-OBS
- Which simulation platform?
- OBS network model
 - Edge Node
 - Core Node
- The performance evaluation
 - Scenario and methodology
 - The effect of number of wavelengths on the OBS links
 - Comparison with INET
- Conclusions

Conclusions

- New OBS model for OMNeT++ was introduced
- Includes implementation of edge and core node
- Developed and implemented taking into account modularity => addition of future proposals
- The model simulates correctly the basic operations
- The performance of the OBS model was compared with the well know INET model
 - similar performance in number of events and simulation duration
 - need more memory

Thanks!

More info about our OBS modules:

 https://www.tlm.unavarra.es/investigacion/ proyectos/strrong/soft/