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Motivations: Hardware Clocks of Sensor Nodes

• Digital clocks

– A counter counts time steps of an ideally fixed length

– Reading of the counter at real-time t : 

– Ideal rate:

• Sensor nodes are equipped with cheap oscillators

– Rate fluctuates over time

• due to changes in supply voltage,                         
temperature, and aging

– Drift:

– Drift variation:
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Motivations: Time-Critical Protocols

• Time-critical protocols require accurate clock 
models for realistic simulation results

– Several MAC protocols (e.g., TDMA) assume perfectly 
synchronized clocks

• Clock drift has to be taken into account

– Synchronization protocols (e.g., FTSP) estimate the 
drift of the HW clock

• Linear regression on time values retrieved from neighbors

• A model for HW clocks that assumes constant drift would 
lead to an unrealistic perfect synchronization
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Hardware Clock: Models

• Tuning-fork
– Drift as a direct function of temperature

• Bounded-drift
– Drift limited by known bounds

• Bounded-drift-variation
– Drift variation limited by known bounds

• Combined
– Most general model, describes also the previous ones
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Hardware Clock: Linear Piecewise Approximation

• Time is divided into intervals of length tint with 
constant drift

– Initial HW time and drift are sufficient for computing 
the approximated HW time within an interval
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Hardware Clock: Linear Piecewise Approximation

– Maximum error introduced by the approximation:

– Validity range for the approximation:
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Clock Translation

• From simulation to HW time

e.g., to provide current HW time

1.

2.

• From HW to simulation time

e.g., to schedule an event by using                                          the 
HW time as the time reference

1. find k such that

2.
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Our Case Study

• Castalia (A. Boulis, http://castalia.npc.nicta.com.au)

– WSNs simulator based on OMNeT++

• Accurate model of the wireless channel and HW components

• Provides time with constant drift to each node

– Not sufficient for simulating time-critical applications

– Manual translation to the OMNeT++ simulation time

– A node only knows the time provided by its HW clock

• Simulation time hidden from the application

• HW time -> simulation time before scheduling events

http://castalia.npc.nicta.com.au/
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Proposed Approach for Castalia
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Event Scheduling Interface

• New interface for scheduling events

– Applications schedule events using HW time, the only 
time available on a real sensor node

– Time translation is completely hidden

• Clock Translator translates HW time to simulation time

• OMNeT++ event scheduling methods are eventually called
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Clock Translator: Sliding Storage Window

• Sliding storage window

– Storing values for all intervals would generate a prohibitively 
high memory overhead

• Only one window of s intervals is 
stored at a time

• Window updated every u intervals,

• Events beyond the current window are 
kept in a local queue and scheduled 
when the time window is updated

0 u s 
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Evaluation

• Evaluated on four built-in Castalia applications

– Memory overhead

• (16∙Nnodes∙s) Bytes

– e.g., 150 nodes, 1000 intervals per window: 2400 KBytes

– Execution time overhead

• About 11% when using an accurate drift clock model
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Conclusions

• Our framework provides realistic clock models 
for simulation

– Allows simulation of time-critical applications

• MAC and synchronization protocols

– Provides well-defined interfaces for scheduling events

• Simulation time hidden from the application

– Introduces minimal overhead

– Easily extendable to other network simulators


