
1

Accurate Clock Models for Simulating
Wireless Sensor Networks

F. Ferrari, A. Meier, L. Thiele

TIK Institute – ETH Zurich

2

Motivations: Hardware Clocks of Sensor Nodes

• Digital clocks

– A counter counts time steps of an ideally fixed length

– Reading of the counter at real-time t :

– Ideal rate:

• Sensor nodes are equipped with cheap oscillators

– Rate fluctuates over time

• due to changes in supply voltage,
temperature, and aging

– Drift:

– Drift variation:

  () () / 1t dh t dt

  2 2() () /t d h t dt

() () / 1f t dh t dt 

()h t

3

Motivations: Time-Critical Protocols

• Time-critical protocols require accurate clock
models for realistic simulation results

– Several MAC protocols (e.g., TDMA) assume perfectly
synchronized clocks

• Clock drift has to be taken into account

– Synchronization protocols (e.g., FTSP) estimate the
drift of the HW clock

• Linear regression on time values retrieved from neighbors

• A model for HW clocks that assumes constant drift would
lead to an unrealistic perfect synchronization

4

Hardware Clock: Models

• Tuning-fork
– Drift as a direct function of temperature

• Bounded-drift
– Drift limited by known bounds

• Bounded-drift-variation
– Drift variation limited by known bounds

• Combined
– Most general model, describes also the previous ones

  ˆ()t

 () ˆt

     
2

0
() ()t A T t T

         ˆ() ()ˆt t

5

Hardware Clock: Linear Piecewise Approximation

• Time is divided into intervals of length tint with
constant drift

– Initial HW time and drift are sufficient for computing
the approximated HW time within an interval

6

Hardware Clock: Linear Piecewise Approximation

– Maximum error introduced by the approximation:

– Validity range for the approximation:

2

int int
/ 8 0.125 sec with 10sect t       

  
int

ˆ/ 10,000secˆt

7

Clock Translation

• From simulation to HW time

e.g., to provide current HW time

1.

2.

• From HW to simulation time

e.g., to schedule an event by using the
HW time as the time reference

1. find k such that

2.

   0 int
() /k t t t

 * * *() () (0) 1k k kh t h t h t     

 *

int
(0) () ()k kh h t h t

   * *

0 int
() (0) / 1k kt t k t h t h      

8

Our Case Study

• Castalia (A. Boulis, http://castalia.npc.nicta.com.au)

– WSNs simulator based on OMNeT++

• Accurate model of the wireless channel and HW components

• Provides time with constant drift to each node

– Not sufficient for simulating time-critical applications

– Manual translation to the OMNeT++ simulation time

– A node only knows the time provided by its HW clock

• Simulation time hidden from the application

• HW time -> simulation time before scheduling events

http://castalia.npc.nicta.com.au/

9

Proposed Approach for Castalia

Application

OMNeT++
Scheduler

Hardware
Clock

Software
Clock

Clock
Translator

Communication
Stack

Synchronization
ManageradjustTime()

adjustDrift()

getHWtime()

HWtoSimTime()

“expired()”

scheduleAtHWtime()

remove()

isScheduled()

scheduleAt()

sendDelayed()

cancel()

getEstimatedDrift()

10

Event Scheduling Interface

• New interface for scheduling events

– Applications schedule events using HW time, the only
time available on a real sensor node

– Time translation is completely hidden

• Clock Translator translates HW time to simulation time

• OMNeT++ event scheduling methods are eventually called

Application

OMNeT++
Scheduler

Communication
Stack

Synchronization
Manager

“expired()”

scheduleAtHWtime()

remove()

isScheduled()

scheduleAt()

sendDelayed()

cancel()

Clock
Translator

11

Clock Translator: Sliding Storage Window

• Sliding storage window

– Storing values for all intervals would generate a prohibitively
high memory overhead

• Only one window of s intervals is
stored at a time

• Window updated every u intervals,

• Events beyond the current window are
kept in a local queue and scheduled
when the time window is updated

0 u s 

12

Evaluation

• Evaluated on four built-in Castalia applications

– Memory overhead

• (16∙Nnodes∙s) Bytes

– e.g., 150 nodes, 1000 intervals per window: 2400 KBytes

– Execution time overhead

• About 11% when using an accurate drift clock model

13

Conclusions

• Our framework provides realistic clock models
for simulation

– Allows simulation of time-critical applications

• MAC and synchronization protocols

– Provides well-defined interfaces for scheduling events

• Simulation time hidden from the application

– Introduces minimal overhead

– Easily extendable to other network simulators

