
Horizon
Runtime Efficient Event Scheduling inRuntime Efficient Event Scheduling in

Multi-threaded Network Simulation

Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleGeo g u , o Sto e s, Ja es G oss, aus e e

http://www.comsys.rwth-aachen.de/

Communication and
Distributed Systems

OMNeT++ Workshop, SimuTools, March 2011

Motivation

 Need for Complex Network Simulation Models
 Detailed channel and PHY characteristics

 Large scale P2P and Internet backbone models

High processing and runtime demandg p g

 Proliferation of Multi-processor Systemsp y
 Desktop: 4-8 cores, servers: 24 cores

 “Desktop Cluster”es top C uste

Cheap, powerful commodity hardware

2Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Motivation

 Need for Complex Network Simulation Models
 Detailed channel and PHY characteristics

 Large scale P2P and Internet backbone models

High processing and runtime demandg p g

 Proliferation of Multi-processor Systemsp y
 Desktop: 4-8 cores, servers: 24 cores

 “Desktop Cluster”es top C uste

Cheap, powerful commodity hardware

 Utilize Parallelization to Cut Runtimes?

3Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Motivation: Downside of Parallelization

 Parallelization Introduces Overhead
 Thread synchronization, management of shared data y g

 Increased management overhead per event

 Negative impact on events of low complexityg p p y



4Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Motivation: Downside of Parallelization

 Parallelization Introduces Overhead
 Thread synchronization, management of shared data y g

 Increased management overhead per event

 Negative impact on events of low complexityg p p y

 Dilemma / TradeoffDilemma / Tradeoff

Performance Overhead

5Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Motivation: Downside of Parallelization

 Parallelization Introduces Overhead
 Thread synchronization, management of shared data y g

 Increased management overhead per event

 Negative impact on events of low complexityg p p y

 Dilemma / TradeoffDilemma / Tradeoff

Performance Overhead

 Minimize Parallelization Overhead

6Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Horizon: Approach

 Horizon
 Focus on multi-processor systemsp y

 Centralized architecture

 Conservative synchronization

Sim. Model

y
Determine independent events

 Expanded Events
Modeling paradigmg p g

 Per event lookahead

 Identify independent events

Computing
Cluster / CPUs

y p

7Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Horizon: Approach

 Horizon
 Focus on multi-processor systemsp y

 Centralized architecture

 Conservative synchronization

Sim. Model

y
Determine independent events

 Expanded Events
Modeling paradigmg p g

 Per event lookahead

 Identify independent eventsy p

8Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p







9Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems



Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event







10Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems



Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend







11Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems



Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

Trigger processing







12Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems



Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

Fetch resultsTrigger processing







13Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems



Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

Fetch results

Parallelization Window

Trigger processing

 Independent Events
 Events starting between tstart and tend

 Do not depend on results generated by overlapping event

14Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Modeling paradigm

Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

expanded event

 Independent Events
 Events starting between tstart and tend

 Do not depend on results generated by overlapping event

15Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Modeling paradigm

Challenges
How to reduce parallelization overhead?How to reduce parallelization overhead?

Challenges and Solutions

 We Address Two Challenges

Thread Synchronization Event SchedulingThread Synchronization
Overhead

Event Scheduling
Overhead

17Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Challenges and Solutions

 We Address Two Challenges

Thread Synchronization Event SchedulingEvent SchedulingThread Synchronization
Overhead

Event Scheduling
Overhead

Event Scheduling
Overhead

18Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event sety
Workers wait for incoming jobs

Access to shared data structures event scheduler

 Straightforward Implementation
 Locks condition variables Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available If lock occupied or no job available
Suspend thread

Free-up CPU resources

19Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Free up CPU resources

Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event sety
Workers wait for incoming jobs

Access to shared data structures event scheduler

 Straightforward Implementation
 Locks condition variables

work queue

 Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available If lock occupied or no job available
Suspend thread

Free-up CPU resources

20Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Free up CPU resources

Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event sety
Workers wait for incoming jobs

Access to shared data structures event scheduler

 Straightforward Implementation
 Locks condition variables

work queue

 Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available

workerworkerworker

 If lock occupied or no job available
Suspend thread

Free-up CPU resources

21Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Free up CPU resources

Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event sety
Workers wait for incoming jobs

Access to shared data structures event scheduler

 Straightforward Implementation
 Locks condition variables

work queue

 Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available

workerworkerworker

 If lock occupied or no job available
Suspend thread

Free-up CPU resources

22Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Free up CPU resources

Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event set
Increases Threading OverheadIncreases Threading Overheady

Workers wait for incoming jobs

Access to shared data structures event scheduler

Increases Threading Overhead
• sys-calls into kernel
• context switches

Increases Threading Overhead
• Sys-calls into kernel
• Context switches

 Straightforward Implementation
 Locks condition variables

work queue

 Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available

workerworkerworker

 If lock occupied or no job available
Suspend thread

Free-up CPU resources

23Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Free up CPU resources

Thread Synchronization Overhead: Approach

 Challenge
 Suspending Threads Increases Overheadp g

 Observation
future event set

Observation
 Simulations run on dedicated hardware

 Freeing-up CPUs is needless
event scheduler

 Freeing up CPUs is needless

 Crucial to minimize offloading delay work queue

 Approach
 Use busy waiting for synchronization

workerworkerworker

 Use busy waiting for synchronization

Master actively pushes jobs to workers

24Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Thread Synchronization Overhead: Solution

 Push-based Event Offloading
 Eliminate shared work queueq

 Introduce local synch. buffer per thread

 Spinlock for future event set future event setp

 Synchronization Buffer
M t i j b t t b ff

event scheduler

work queue

Master assigns jobs to empty buffer

Workers spin on empty buffer

 Additional Benefit
Master can identify busy threads

workerworkerworker

y y

Master handles event instead of worker

Make use of scheduler CPU

25Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Thread Synchronization Overhead: Solution

 Push-based Event Offloading
 Eliminate shared work queueq

 Introduce local synch. buffer per thread

 Spinlock for future event set future event setp

 Synchronization Buffer
M t i j b t t b ff

event scheduler

Master assigns jobs to empty buffer

Workers spin on empty buffer

 Additional Benefit
Master can identify busy threads

workerworkerworker

y y

Master handles event instead of worker

Make use of scheduler CPU

26Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Thread Synchronization Overhead: Solution

 Push-based Event Offloading
 Eliminate shared work queueq

 Introduce local synch. buffer per thread

 Spinlock for future event set future event setp

 Synchronization Buffer
M t i j b t t b ff

event scheduler

Master assigns jobs to empty buffer

Workers spin on empty buffer

 Additional Benefit
Master can identify busy threads

workerworker
jobjob

worker
job

y y

Master handles event instead of worker

Make use of scheduler CPU

27Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Challenges and Solutions

 We Address Two Challenges

Thread synchronization Event SchedulingThread synchronization
Overhead

Event Scheduling
Overhead

28Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Challenge

expanded event

 Integrate Expanded Events
 One discrete event marks start

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished

29Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Challenge

expanded event

start event

 Integrate Expanded Events
 One discrete event marks start

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished

30Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Challenge

expanded event

start event barrier event

 Integrate Expanded Events
 One discrete event marks start

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished

31Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Challenge

expanded event

start event barrier event

expanded eventexpanded event

 Integrate Expanded Events
 One discrete event marks start

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished

32Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Challenge

expanded event

start event barrier event

expanded eventexpanded event

Doubles overhead per eventDoubles Overhead per Event
C ti d l ti f t

 Integrate Expanded Events
 One discrete event marks start

• Creation, deletion of events
• Insertion, removal from FES

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished

33Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Approach

 Observations
 Push-based synchronizationy

Upper bound for simultaneously offloaded events: #CPUs

Upper bound for simultaneously existing barriers: #CPUs

 Approach
 Avoid insertion into locked(!) message queue Avoid insertion into locked(!) message queue

 Each thread maintains barrier time of current event

 Pointer to earliest barrier enables fast lookup Pointer to earliest barrier enables fast lookup

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message

34Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

end end end end

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 0.5 s
tend: 0.8 s

tstart: 1.2 s
tend: 1.5 s

tstart: 0.0 s
tend: 1.0 s

job: job: job: job:

tend: - tend: - tend: - tend: -

35Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 0.5 s
tend: 0.8 s

tstart: 1.2 s
tend: 1.5 s

job: job: job:tstart: 0.0 s
tend: 1.0 s

job:

tend: - tend: - tend: -tend: 1.0 s

36Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 0.5 s
tend: 0.8 s

tstart: 1.2 s
tend: 1.5 s

job: job: job:tstart: 0.0 s
tend: 1.0 s

job:

tend: - tend: - tend: -tend: 1.0 s

37Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

job: job:tstart: 0.0 s
tend: 1.0 s

job: tstart: 0.5 s
tend: 0.8 s

job:

tend: - tend: -tend: 1.0 s tend: 0.8 s

38Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

job: job:tstart: 0.0 s
tend: 1.0 s

job: tstart: 0.5 s
tend: 0.8 s

job:

tend: - tend: -tend: 1.0 s tend: 0.8 s

39Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

tstart: 0.9 s
tend: 1.1 s

job: job:tstart: 0.0 s
tend: 1.0 s

job: tstart: 0.5 s
tend: 0.8 s

job:

tend: - tend: -tend: 1.0 s tend: 0.8 s

40Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

tstart: 0.9 s
tend: 1.1 s

job: job: job:tstart: 0.0 s
tend: 1.0 s

job:

tend: - tend: - tend: -tend: 1.0 s

41Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

tstart: 0.9 s
tend: 1.1 s

job: job: job:tstart: 0.0 s
tend: 1.0 s

job:

tend: - tend: - tend: -tend: 1.0 s

42Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

job: job:tstart: 0.0 s
tend: 1.0 s

job: tstart: 0.9 s
tend: 1.1 s

job:

tend: - tend: -tend: 1.0 s tend: 1.1 s

43Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

job: job: job:tstart: 0.0 s
tend: 1.0 s

job:

tend: - tend: - tend: -tend: 1.0 s

44Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

job: job: job: job:

tend: - tend: - tend: - tend: -

45Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

job: job: job: tstart: 1.2 s
tend: 1.5 s

job:

tend: - tend: - tend: - tend: 1.5 s

46Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

job: job: job: tstart: 1.2 s
tend: 1.5 s

job:

tend: - tend: - tend: - tend: 1.5 s

47Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Evaluation
How does it perform?How does it perform?

Evaluation: Model

 Design Goal
Measure event handling overheadg

 “Null” Simulation Modelu S u at o ode
 110 independent modules

 Null module NullNull module
Only re-schedules self-messages

No other computations

Null
Module

 Execute 5.5 Million Events

Execution Time == Overhead

49Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Evaluation: Thread Synchronization Overhead

~ 9.5x
reduction

1000x~ 1000x
reduction

50Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Evaluation: Analysis of Context Switches

P ll b d Th d S h i iPull-based Thread Synchronization

Push-based Thread Synchronization

51Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Evaluation: Event Scheduling Overhead

~ 1.5x
reduction

~ 1.5x 1.5x
reduction

52Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Conclusions
The take away (barrier) messageThe take away (barrier) message…

Conclusions

 Parallelization Increases Overhead
 Thread synchronizationy

 Event scheduling

 Two Approaches to Mitigate Overhead
 Push-based thread synchronization minimizes context switchesPush based thread synchronization minimizes context switches

 Local barrier information replaces barrier messages

 Overhead Reduction
 Push-based synchronization: ~9 5x reduction Push based synchronization: 9.5x reduction

 Barrier algorithm: ~1.5x reduction

 Combined: ~ 14x reduction

54Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

 Combined: 14x reduction

Thank You

Questions?

55Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Backup Slides
Just in case someone asksJust in case someone asks…

Time Calibration

 How to Obtain Accurate Timing Information?
 Utilize existing techniquesg q

 Emulation
A fili l d h d

A
c

 Accurate profiling on emulated hardware

 Automatic Simulation Calibration

ccuracy

 Applicable to simple hardware platforms only

P t l S ifi ti Protocol Specifications
 Independent of hardware platform

D
evelop

D
evelop

Spe

 Expert Knowledge
 Requires experience and careful judgment

pm
ent

ed

57Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

q p j g

Parallel Scheduling

 Parallel Scheduling
 Offload independent events to worker CPUsp

event en+2

g
un

its independent
events

sim. time

event en+4

event en

event en+1

event en+3event en-2

event en-1

pr
oc

es
si

ng

 Causal Correctness
sim. timetstart tend

 Increasing timestamp order among dependent events

 Data Integrityg y
 Compose model of self-contained functional units

 Functional units correspond to concept of logical processes

58Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

p p g p

