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Motivation

 Need for Complex Network Simulation Models
 Detailed channel and PHY characteristics

 Large scale P2P and Internet backbone models

High processing and runtime demandg p g

 Proliferation of Multi-processor Systemsp y
 Desktop: 4-8 cores, servers: 24 cores

 “Desktop Cluster”es top C uste

Cheap, powerful commodity hardware
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 Proliferation of Multi-processor Systemsp y
 Desktop: 4-8 cores, servers: 24 cores

 “Desktop Cluster”es top C uste

Cheap, powerful commodity hardware

 Utilize Parallelization to Cut Runtimes?
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Motivation: Downside of Parallelization

 Parallelization Introduces Overhead
 Thread synchronization, management of shared data y g

 Increased management overhead per event

 Negative impact on events of low complexityg p p y


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 Increased management overhead per event

 Negative impact on events of low complexityg p p y

 Dilemma / TradeoffDilemma / Tradeoff

Performance Overhead

 Minimize Parallelization Overhead 
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Horizon: Approach

 Horizon
 Focus on multi-processor systemsp y

 Centralized architecture

 Conservative synchronization

Sim. Model

y
Determine independent events

 Expanded Events 
Modeling paradigmg p g

 Per event lookahead

 Identify independent events

Computing
Cluster / CPUs

y p
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Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p







9Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems





Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event







10Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems





Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p
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Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

Fetch resultsTrigger processing
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Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

Fetch results

Parallelization Window

Trigger processing

 Independent Events
 Events starting between tstart and tend

 Do not depend on results generated by overlapping event
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Challenges
How to reduce parallelization overhead?How to reduce parallelization overhead?



Challenges and Solutions

 We Address Two Challenges

Thread Synchronization Event SchedulingThread Synchronization
Overhead

Event Scheduling
Overhead
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Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event sety
Workers wait for incoming jobs

Access to shared data structures event scheduler

 Straightforward Implementation
 Locks condition variables Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available If lock occupied or no job available
Suspend thread

Free-up CPU resources
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Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g
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 Synchronization involves future event set
Increases Threading OverheadIncreases Threading Overheady

Workers wait for incoming jobs

Access to shared data structures event scheduler

Increases Threading Overhead
• sys-calls into kernel 
• context switches

Increases Threading Overhead
• Sys-calls into kernel 
• Context switches

 Straightforward Implementation
 Locks condition variables
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Thread Synchronization Overhead: Approach

 Challenge
 Suspending Threads Increases Overheadp g

 Observation
future event set

Observation
 Simulations run on dedicated hardware

 Freeing-up CPUs is needless
event scheduler

 Freeing up CPUs is needless

 Crucial to minimize offloading delay work queue

 Approach
 Use busy waiting for synchronization

workerworkerworker

 Use busy waiting for synchronization

Master actively pushes jobs to workers
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Thread Synchronization Overhead: Solution

 Push-based Event Offloading
 Eliminate shared work queueq

 Introduce local synch. buffer per thread

 Spinlock for future event set future event setp

 Synchronization Buffer
M t i j b t t b ff

event scheduler

work queue

Master assigns jobs to empty buffer

Workers spin on empty buffer

 Additional Benefit
Master can identify busy threads

workerworkerworker

y y

Master handles event instead of worker

Make use of scheduler CPU
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Challenges and Solutions

 We Address Two Challenges

Thread synchronization Event SchedulingThread synchronization
Overhead

Event Scheduling
Overhead
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Event Scheduling Overhead: Challenge

expanded event

 Integrate Expanded Events
 One discrete event marks start

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished
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Event Scheduling Overhead: Challenge

expanded event

start event barrier event

expanded eventexpanded event

Doubles overhead per eventDoubles Overhead per Event
C ti  d l ti  f  t

 Integrate Expanded Events
 One discrete event marks start

• Creation, deletion of  events
• Insertion, removal from FES

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished
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Event Scheduling Overhead: Approach

 Observations
 Push-based synchronizationy

Upper bound for simultaneously offloaded events: #CPUs

Upper bound for simultaneously existing barriers: #CPUs

 Approach
 Avoid insertion into locked(!) message queue Avoid insertion into locked(!) message queue

 Each thread maintains barrier time of current event

 Pointer to earliest barrier enables fast lookup Pointer to earliest barrier enables fast lookup

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message
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Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 0.5 s
tend: 0.8 s

tstart: 1.2 s
tend: 1.5 s

tstart: 0.0 s
tend: 1.0 s

job: job: job: job:

tend: - tend: - tend: - tend: -
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Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
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Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

job: job: job: tstart: 1.2 s
tend: 1.5 s

job:

tend: - tend: - tend: - tend: 1.5 s
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Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
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Evaluation
How does it perform?How does it perform?



Evaluation: Model

 Design Goal
Measure event handling overheadg

 “Null” Simulation Modelu S u at o ode
 110 independent modules

 Null module NullNull module
Only re-schedules self-messages

No other computations

Null
Module

 Execute 5.5 Million Events

Execution Time == Overhead
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Evaluation: Thread Synchronization Overhead

~ 9.5x
reduction

1000x~ 1000x 
reduction
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Evaluation: Analysis of Context Switches

P ll b d Th d S h i iPull-based Thread Synchronization

Push-based Thread Synchronization
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Evaluation: Event Scheduling Overhead

~ 1.5x
reduction

~ 1.5x 1.5x
reduction
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Conclusions
The take away (barrier) messageThe take away (barrier) message…



Conclusions

 Parallelization Increases Overhead
 Thread synchronizationy

 Event scheduling

 Two Approaches to Mitigate Overhead
 Push-based thread synchronization minimizes context switchesPush based thread synchronization minimizes context switches

 Local barrier information replaces barrier messages

 Overhead Reduction
 Push-based synchronization: ~9 5x reduction Push based synchronization: 9.5x reduction

 Barrier algorithm: ~1.5x reduction

 Combined: ~ 14x reduction
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 Combined:  14x reduction



Thank You

Questions?
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Backup Slides
Just in case someone asksJust in case someone asks…



Time Calibration

 How to Obtain Accurate Timing Information?
 Utilize existing techniquesg q

 Emulation
A fili l d h d

A
c

 Accurate profiling on emulated hardware

 Automatic Simulation Calibration

ccuracy

 Applicable to simple hardware platforms only

P t l S ifi ti Protocol Specifications
 Independent of hardware platform

D
evelop

D
evelop

Spe

 Expert Knowledge
 Requires experience and careful judgment

pm
ent

ed
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Parallel Scheduling

 Parallel Scheduling
 Offload independent events to worker CPUsp

event  en+2

g 
un

its independent
events

sim. time

event  en+4

event  en

event  en+1

event  en+3event  en-2

event  en-1

pr
oc

es
si

ng

 Causal Correctness
sim. timetstart tend

 Increasing timestamp order among dependent events

 Data Integrityg y
 Compose model of self-contained functional units

 Functional units correspond to concept of logical processes

58Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

p p g p


