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e Need for Complex Network Simulation Models
» Detailed channel and PHY characteristics
» Large scale P2P and Internet backbone models
= High processing and runtime demand

e Proliferation of Multi-processor Systems
» Desktop: 4-8 cores, servers: 24 cores
» “Desktop Cluster”
= Cheap, powerful commodity hardware
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e Need for Complex Network Simulation Models
» Detailed channel and PHY characteristics
» Large scale P2P and Internet backbone models

= High processing and runtime demand

e Proliferation of Multi-processor Systems
» Desktop: 4-8 cores, servers: 24 cores
» “Desktop Cluster”

= Cheap, powerful commodity hardware

= Utilize Parallelization to Cut Runtimes?
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e Parallelization Introduces Overhead
» Thread synchronization, management of shared data
» Increased management overhead per event

» Negative impact on events of low complexity
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e Parallelization Introduces Overhead
» Thread synchronization, management of shared data
» Increased management overhead per event

» Negative impact on events of low complexity

e Dilemma/ Tradeoff

Performance h Overhead
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e Parallelization Introduces Overhead
» Thread synchronization, management of shared data
» Increased management overhead per event

» Negative impact on events of low complexity

e Dilemma/ Tradeoff

Performance “ Overhead

= Minimize Parallelization Overhead
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0 0 ADDIoa

e Horizon
» Focus on multi-processor systems
» Centralized architecture

» Conservative synchronization

B Determine independent events

e Expanded Events
» Modeling paradigm

» Per event lookahead ~ Computing
Cluster / CPUs

= |dentify independent events
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e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

—
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Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

expanded event —
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e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

expanded event —

tstart tend
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e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

—| expanded event —

Trigger processing
tstart tend
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e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

—| expanded event —

Trigger processing : : Fetch results
tstart tend
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e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

— expanded event ﬁ
Trigger processing i Y J Fetch results
tstart tend

Parallelization Window

e |[ndependent Events

» Events starting between t_,, and t

star end

» Do not depend on results generated by overlapping event

» Modeling paradigm
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e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

— expanded event —

tstart tend

expanded event

e |[ndependent Events
» Events starting between t_,,, and t_4

» Do not depend on results generated by overlapping event

» Modeling paradigm
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Challenges

How to reduce parallelization overhead?




e \We Address Two Challenges

(" ) (

Thread Synchronization Event Scheduling
Overhead Overhead
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e \We Address Two Challenges

Thread Synchronization Event Scheduling
Overhead Overhead
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e Master/Worker Architecture
» Master coordinates simulation progress
» \Workers do actual processing

» Synchronization involves
® \Workers wait for incoming jobs

B Access to shared data structures

e Straightforward Implementation
» Locks, condition variables
» \Workers pull jobs from work queue

» If lock occupied or no job available
® Suspend thread

B Free-up CPU resources

future event set

event scheduler
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e Master/Worker Architecture
» Master coordinates simulation progress
» \Workers do actual processing

» Synchronization involves
® \Workers wait for incoming jobs

B Access to shared data structures

e Straightforward Implementation
» Locks, condition variables
» \Workers pull jobs from work queue

» If lock occupied or no job available
® Suspend thread

B Free-up CPU resources

future event set

event scheduler

work queue
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e Master/Worker Architecture
» Master coordinates simulation progress
» \Workers do actual processing

N fut t set
» Synchronization involves S

® \Workers wait for incoming jobs
event scheduler
B Access to shared data structures —

M
e Straightforward Implementation B orkaueue
» Locks, condition variables
» Workers pull jobs from work queue Korkes Workes atker

» If lock occupied or no job available n n n

® Suspend thread

B Free-up CPU resources
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event scheduler
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e Master/Worker Architecture

» Master coordinates simulation proqgress
Prog A

» \Workers do actual processing P

> S . future event set
YNt Increases Threading Overhead

m\ » Sys-calls into kernel

A » Context switches event scheduler

M
e Straightforward Implementation B orkaueue
» Locks, condition variables
» Workers pull jobs from work queue Korkes Workes atker

» If lock occupied or no job available B n B

® Suspend thread

B Free-up CPU resources
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oagd 0 AtionN Overnead: AbpDro

e Challenge

» Suspending Threads Increases Overhead A

1§

'L future event set ]

e Observation

» Simulations run on dedicated hardware
event scheduler

» Freeing-up CPUs is needless A
» Crucial to minimize offloading delay - queue
Py ApproaCh worker worker worker

» Use busy waiting for synchronization n B n

» Master actively pushes jobs to workers
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e Push-based Event Offloading

» Eliminate shared work queue
d A

» Introduce local synch. buffer per thread P

' fut t set
» Spinlock for future event set AN EE

e Synchronization Buffer

» Master assigns jobs to empty buffer @
» Workers spin on empty buffer work queue
¢ AddlthnaI Ben eflt worker worker worker

> Master can identify busy threads AR e e

» Master handles event instead of worker
= Make use of scheduler CPU
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e Push-based Event Offloading
» Eliminate shared work queue

N
» Introduce local synch. buffer per thread P

' fut t set
» Spinlock for future event set AN EE

e Synchronization Buffer

» Master assigns jobs to empty buffer

» Workers spin on empty buffer

® Ad d |t| on al B en eﬂt worker worker worker

> Master can identify busy threads AR e e

» Master handles event instead of worker
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e Push-based Event Offloading

» Eliminate shared work queue —~

» Introduce local synch. buffer per thread P

' fut t set
» Spinlock for future event set AN EE

e Synchronization Buffer

» Master assigns jobs to empty buffer

» Workers spin on empty buffer

_ : job job job
® Ad d |t| on al B en eﬂt worker worker worker

> Master can identify busy threads AR e e

» Master handles event instead of worker
= Make use of scheduler CPU
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e \We Address Two Challenges

Thread synchronization Event Scheduling
Overhead Overhead

Communication and i
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

28




expanded event I—)

e |[ntegrate Expanded Events
» One discrete event marks start
» Another discrete event marks end

» Overlapping events: Start before barrier event

e Straightforward Implementation
» Insert barrier event upon offloading
» Wait at barrier event till execution finished
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start event

e |[ntegrate Expanded Events
» One discrete event marks start
» Another discrete event marks end

» Overlapping events: Start before barrier event

e Straightforward Implementation
» Insert barrier event upon offloading
» Wait at barrier event till execution finished

expanded event H
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expanded event H

start event

barrier event

e |[ntegrate Expanded Events

» One discrete event marks start

» Another discrete event marks end

» Overlapping events: Start before barrier event

e Straightforward Implementation

» Insert barrier event upon offloading

» Wait at barrier event till execution finished
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expanded event I—)

start event barrier event

expanded event

e |[ntegrate Expanded Events
» One discrete event marks start
» Another discrete event marks end

» Overlapping events: Start before barrier event

e Straightforward Implementation
» Insert barrier event upon offloading
» Wait at barrier event till execution finished
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e expanded event —

start event barrier event

anded event

Doubles Overhead per Event
* Creation, deletion of events
* Insertion, removal from FES

» One discrete event marks start

* Integrate E

» Another discrete event marks end

» Overlapping events: Start before barrier event

e Straightforward Implementation
» Insert barrier event upon offloading
» Wait at barrier event till execution finished
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oad: ADDroeé

e Observations

» Push-based synchronization
®m Upper bound for simultaneously offloaded events: #CPUs

= Upper bound for simultaneously existing barriers: #CPUs

e Approach
» Avoid insertion into locked(!) message gueue
» Each thread maintains barrier time of current event

» Pointer to earliest barrier enables fast lookup

job: OMNeT++ job:
message

OMNeT++ job:
message

OMNeT++ job:
message

OMNeT++
message

teng: barrier time teng: barrier time teng: barrier time

teng: barrier time
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Example Schedule:

Simulator;

Future Event Set
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Example Schedule:

Simulator;
Future Event Set
( 4
job: job: job job:
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Evaluation

How does it perform?




e Design Goal

» Measure event handling overhead

e “Null” Simulation Model ( -
» 110 independent modules ~
» Null module Null
® Only re-schedules self-messages @ Module
® No other computations N

» Execute 5.5 Million Events

= Execution Time == Overhead
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Conclusions

The take away (barrier) message...




e Parallelization Increases Overhead
» Thread synchronization

» Event scheduling

e Two Approaches to Mitigate Overhead
» Push-based thread synchronization minimizes context switches

» Local barrier information replaces barrier messages

e Overhead Reduction
» Push-based synchronization: ~9.5x reduction
» Barrier algorithm: ~1.5x reduction

» Combined: ~ 14X reduction

Communication and i
. . 49—1 ) 1
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle




Questions?
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Backup Slides

Just In case someone asks...




How to Obtain Accurate Timing Information?

» Utilize existing techniques

Emulation

» Accurate profiling on emulated hardware

Automatic Simulation Calibration

» Applicable to simple hardware platforms only

Protocol Specifications

» Independent of hardware platform

Expert Knowledge

» Requires experience and careful judgment

paadg
Juswdojana
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Parallel Scheduling

» Offload independent events to worker CPUs

sim. time
31 -
= event e,,4
(@)
;|-
ﬁ event e, event e 4
O
=
S n event e, event e, event e,;
v >
t sim. time

start tend

Causal Correctness

» Increasing timestamp order among dependent events

Data Integrity
» Compose model of self-contained functional units
» Functional units correspond to concept of logical processes
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