Horizon

Runtime Efficient Event Scheduling in
Multi-threaded Network Simulation

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

http://www.comsys.rwth-aachen.de/ OMNeT++ Workshop, SimuTools, March 2011
Communication and
(348 Distributed Systems

e Need for Complex Network Simulation Models
» Detailed channel and PHY characteristics
» Large scale P2P and Internet backbone models
= High processing and runtime demand

e Proliferation of Multi-processor Systems
» Desktop: 4-8 cores, servers: 24 cores
» “Desktop Cluster”
= Cheap, powerful commodity hardware

COM icati _
(com) LU Ll Gl Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle
3 4= Distributed Systems

e Need for Complex Network Simulation Models
» Detailed channel and PHY characteristics
» Large scale P2P and Internet backbone models

= High processing and runtime demand

e Proliferation of Multi-processor Systems
» Desktop: 4-8 cores, servers: 24 cores
» “Desktop Cluster”

= Cheap, powerful commodity hardware

= Utilize Parallelization to Cut Runtimes?

Communication and i
. . —g—l) 1
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

e Parallelization Introduces Overhead
» Thread synchronization, management of shared data
» Increased management overhead per event

» Negative impact on events of low complexity

COM ot _
£ Communication and Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle
3 4= Distributed Systems

e Parallelization Introduces Overhead
» Thread synchronization, management of shared data
» Increased management overhead per event

» Negative impact on events of low complexity

e Dilemma/ Tradeoff

Performance h Overhead

COM icati _
(com) Communication and Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle
3 4= Distributed Systems

e Parallelization Introduces Overhead
» Thread synchronization, management of shared data
» Increased management overhead per event

» Negative impact on events of low complexity

e Dilemma/ Tradeoff

Performance “ Overhead

= Minimize Parallelization Overhead

COM icati _
(com) LU Ll Gl Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle
3 4= Distributed Systems

0 0 ADDIoa

e Horizon
» Focus on multi-processor systems
» Centralized architecture

» Conservative synchronization

B Determine independent events

e Expanded Events
» Modeling paradigm

» Per event lookahead ~ Computing
Cluster / CPUs

= |dentify independent events

Communication and i
. . 49—1) 1
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

0 0 ADDIoa

e Horizon
» Focus on multi-processor systems
» Centralized architecture

» Conservative synchronization

B Determine independent events

e Expanded Events

» Modeling paradigm
» Per event lookahead

= |dentify independent events

Communication and i
. . —g—l) 1
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

—

COM ot _
£ Communication and Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle
34 Distributed Systems

Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

expanded event —

SYS

Communication and

o Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle
Distributed Systems

10

e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

expanded event —

tstart tend

Communication and i
. . —g—a) 1
Distributed Systems Georqg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

—| expanded event —

Trigger processing
tstart tend

Communication and i
. . —g—a) 1
Distributed Systems Georqg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

—| expanded event —

Trigger processing : : Fetch results
tstart tend

Communication and i
. . —g—a) 1
Distributed Systems Georqg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

— expanded event ﬁ
Trigger processing i Y J Fetch results
tstart tend

Parallelization Window

e |[ndependent Events

» Events starting between t_,, and t

star end

» Do not depend on results generated by overlapping event

» Modeling paradigm

Communication and i
. . —g—l) 1
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

14

e Expanded Events
» Model processes that span period of time
» Augment discrete events with durations

= Discrete events span period of simulated time

— expanded event —

tstart tend

expanded event

e |[ndependent Events
» Events starting between t_,,, and t_4

» Do not depend on results generated by overlapping event

» Modeling paradigm

Communication and i
. . 49—1) 1
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

Challenges

How to reduce parallelization overhead?

e \We Address Two Challenges

(") (

Thread Synchronization Event Scheduling
Overhead Overhead

COM ot _
£ Communication and Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle
34 Distributed Systems

17

e \We Address Two Challenges

Thread Synchronization Event Scheduling
Overhead Overhead

Communication and i
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

18

e Master/Worker Architecture
» Master coordinates simulation progress
» \Workers do actual processing

» Synchronization involves
® \Workers wait for incoming jobs

B Access to shared data structures

e Straightforward Implementation
» Locks, condition variables
» \Workers pull jobs from work queue

» If lock occupied or no job available
® Suspend thread

B Free-up CPU resources

future event set

event scheduler

COM icati i
Communication and Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

V4-3 Distributed Systems

19

e Master/Worker Architecture
» Master coordinates simulation progress
» \Workers do actual processing

» Synchronization involves
® \Workers wait for incoming jobs

B Access to shared data structures

e Straightforward Implementation
» Locks, condition variables
» \Workers pull jobs from work queue

» If lock occupied or no job available
® Suspend thread

B Free-up CPU resources

future event set

event scheduler

work queue

COM icati i
Communication and Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

V4-3 Distributed Systems

20

e Master/Worker Architecture
» Master coordinates simulation progress
» \Workers do actual processing

N fut t set
» Synchronization involves S

® \Workers wait for incoming jobs
event scheduler
B Access to shared data structures —

M
e Straightforward Implementation B orkaueue
» Locks, condition variables
» Workers pull jobs from work queue Korkes Workes atker

» If lock occupied or no job available n n n

® Suspend thread

B Free-up CPU resources

Communication and)
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle 21

e Master/Worker Architecture

» Master coordinates simulation progress A

» \Workers do actual processing 7

N fut t set
» Synchronization involves S

® \Workers wait for incoming jobs
event scheduler
B Access to shared data structures —

M
e Straightforward Implementation B orkaueue
» Locks, condition variables
» Workers pull jobs from work queue Korkes Workes atker

» If lock occupied or no job available n n n

® Suspend thread

B Free-up CPU resources

Communication and)
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle 22

e Master/Worker Architecture

» Master coordinates simulation proqgress
Prog A

» \Workers do actual processing P

> S . future event set
YNt Increases Threading Overhead

m\ » Sys-calls into kernel

A » Context switches event scheduler

M
e Straightforward Implementation B orkaueue
» Locks, condition variables
» Workers pull jobs from work queue Korkes Workes atker

» If lock occupied or no job available B n B

® Suspend thread

B Free-up CPU resources

(com] icati _
LU Ll Gl Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle 23
3 4= Distributed Systems

oagd 0 AtionN Overnead: AbpDro

e Challenge

» Suspending Threads Increases Overhead A

1§

'L future event set]

e Observation

» Simulations run on dedicated hardware
event scheduler

» Freeing-up CPUs is needless A
» Crucial to minimize offloading delay - queue
Py ApproaCh worker worker worker

» Use busy waiting for synchronization n B n

» Master actively pushes jobs to workers

Communication and .
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle 24

e Push-based Event Offloading

» Eliminate shared work queue
d A

» Introduce local synch. buffer per thread P

' fut t set
» Spinlock for future event set AN EE

e Synchronization Buffer

» Master assigns jobs to empty buffer @
» Workers spin on empty buffer work queue
¢ AddlthnaI Ben eflt worker worker worker

> Master can identify busy threads AR e e

» Master handles event instead of worker
= Make use of scheduler CPU

Communication and)
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle 25

e Push-based Event Offloading
» Eliminate shared work queue

N
» Introduce local synch. buffer per thread P

' fut t set
» Spinlock for future event set AN EE

e Synchronization Buffer

» Master assigns jobs to empty buffer

» Workers spin on empty buffer

® Ad d |t| on al B en eﬂt worker worker worker

> Master can identify busy threads AR e e

» Master handles event instead of worker
= Make use of scheduler CPU

Communication and)
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle 26

e Push-based Event Offloading

» Eliminate shared work queue —~

» Introduce local synch. buffer per thread P

' fut t set
» Spinlock for future event set AN EE

e Synchronization Buffer

» Master assigns jobs to empty buffer

» Workers spin on empty buffer

_ : job job job
® Ad d |t| on al B en eﬂt worker worker worker

> Master can identify busy threads AR e e

» Master handles event instead of worker
= Make use of scheduler CPU

Communication and)
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle 27

e \We Address Two Challenges

Thread synchronization Event Scheduling
Overhead Overhead

Communication and i
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

28

expanded event I—)

e |[ntegrate Expanded Events
» One discrete event marks start
» Another discrete event marks end

» Overlapping events: Start before barrier event

e Straightforward Implementation
» Insert barrier event upon offloading
» Wait at barrier event till execution finished

Communication and i
. . 49—1) 1
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

start event

e |[ntegrate Expanded Events
» One discrete event marks start
» Another discrete event marks end

» Overlapping events: Start before barrier event

e Straightforward Implementation
» Insert barrier event upon offloading
» Wait at barrier event till execution finished

expanded event H

Communication and i
. . 49—1) 1
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

30

expanded event H

start event

barrier event

e |[ntegrate Expanded Events

» One discrete event marks start

» Another discrete event marks end

» Overlapping events: Start before barrier event

e Straightforward Implementation

» Insert barrier event upon offloading

» Wait at barrier event till execution finished

COM (it .
oL LSRG S Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

V4-3 Distributed Systems

31

expanded event I—)

start event barrier event

expanded event

e |[ntegrate Expanded Events
» One discrete event marks start
» Another discrete event marks end

» Overlapping events: Start before barrier event

e Straightforward Implementation
» Insert barrier event upon offloading
» Wait at barrier event till execution finished

Communication and i
. . 49—1) 1
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

32

e expanded event —

start event barrier event

anded event

Doubles Overhead per Event
* Creation, deletion of events
* Insertion, removal from FES

» One discrete event marks start

* Integrate E

» Another discrete event marks end

» Overlapping events: Start before barrier event

e Straightforward Implementation
» Insert barrier event upon offloading
» Wait at barrier event till execution finished

Communication and i
. . —g—l) 1
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

oad: ADDroeé

e Observations

» Push-based synchronization
®m Upper bound for simultaneously offloaded events: #CPUs

= Upper bound for simultaneously existing barriers: #CPUs

e Approach
» Avoid insertion into locked(!) message gueue
» Each thread maintains barrier time of current event

» Pointer to earliest barrier enables fast lookup

job: OMNeT++ job:
message

OMNeT++ job:
message

OMNeT++ job:
message

OMNeT++
message

teng: barrier time teng: barrier time teng: barrier time

teng: barrier time

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

Communication and
3 4= Distributed Systems

34

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

35

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

36

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

37

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

38

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

39

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

40

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

41

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

42

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

43

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

44

Example Schedule:

Simulator;
Future Event Set
(4
job: job: job job:

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

45

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

46

Example Schedule:

Simulator;

Future Event Set

Communication and
34 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

47

Evaluation

How does it perform?

e Design Goal

» Measure event handling overhead

e “Null” Simulation Model (-
» 110 independent modules ~
» Null module Null
® Only re-schedules self-messages @ Module
® No other computations N

» Execute 5.5 Million Events

= Execution Time == Overhead

COM icati _
(com) Communication and Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle
3 4= Distributed Systems

49

aluatlo ead 0 ation Overneac
14 I I I 1 1 I 1 1 I |
0 f H |
120_--,-,.,---- v N ---...-,-.,
PO 1111 ESSTSRISNE SISO SN I (O R T s S ST e =
g 80 1©—© Pull-based event handling ~ 9 5x
2 60 1 ¥—X Push-based event handling | reduction
=40
20
0
S 10° .
L L
S10 E
2 10° : ~ 1000x
ST I SR SO S S SRt SUUOUR SOURRUUE SOURROUUEUUROE reduction
§ 100 F 5
a4t :
S 107 ot g et OEEEEEEE R e S
O P b e
5 f : - - - - -
5 10° Foo : . : : 1<©—< Pull-based event handling |-
E 105 i ARRERRLEES SARREREREE | ¥—X Push-based event handling |-
é 1 0L i ! ! i ! ! L I I I l]

o

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

SYS

Communication and
Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

50

Lol Pull-based Thread Synchronization
10 _--”1 --------- I I I I I I I 1 1 L |
10 9] Time slice expired] Sync and I/O operation

Number of Context Switches

4 5 6 7 8
Number of Worker Threads

Push-based Thread Synchronization

s3]

-
o

B Time slice expired I Sync and I/O operation

uwn

—
o

—
o
B

Number of Context Switches

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads

Communication and .
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle 51

aluatic s =10 0 overneag
20 I I I I I I I 1 I I I
) SO SN SRRSO SO SRR SRR SSUSRN ERRORS HORURE NN W
2 6—O0——4—6—o—60 > —o—6—o—9
o | T f o ~ 1.5x
E L0 i T S R RERRREShE reduction
= %\X———H —k K s HK—K K o
o E : : : : : : : : :
5‘sequentialsimulation """ ot cotTTes Pt | &O— Barrier events]
: : : : : : .| =< No barrier events
0 | | | I | | L I | | |
1 2 3 4 5 6 7 8 9 10 11
Number of Worker Threads
$ 105 I 1 I I I I I 1 I I 1
< F ' '
[¥] i
= 104 : ~ 1.5x
f i reduction
E‘ 103 3
s |
O10°F
= : : :
O 1l Lo O— Barrier events]
o 107
£ E : : ¥—xX No barrier events
g 100 I | | | A | | |]] | I

3 4 5 6 7 8 9 10 11
Number of Worker Threads

Communication and

V4-3 Distributed Systems

Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

52

Conclusions

The take away (barrier) message...

e Parallelization Increases Overhead
» Thread synchronization

» Event scheduling

e Two Approaches to Mitigate Overhead
» Push-based thread synchronization minimizes context switches

» Local barrier information replaces barrier messages

e Overhead Reduction
» Push-based synchronization: ~9.5x reduction
» Barrier algorithm: ~1.5x reduction

» Combined: ~ 14X reduction

Communication and i
. . 49—1) 1
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

Questions?

Communication and i
Distributed Systems Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle

Backup Slides

Just In case someone asks...

How to Obtain Accurate Timing Information?

» Utilize existing techniques

Emulation

» Accurate profiling on emulated hardware

Automatic Simulation Calibration

» Applicable to simple hardware platforms only

Protocol Specifications

» Independent of hardware platform

Expert Knowledge

» Requires experience and careful judgment

paadg
Juswdojana

SYS

Communication and

o Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle
Distributed Systems

57

Parallel Scheduling

» Offload independent events to worker CPUs

sim. time
31 -
= event e,,4
(@)
;|-
ﬁ event e, event e 4
O
=
S n event e, event e, event e,;
v >
t sim. time

start tend

Causal Correctness

» Increasing timestamp order among dependent events

Data Integrity
» Compose model of self-contained functional units
» Functional units correspond to concept of logical processes

SYS

Communication and

o Georg Kunz, Mirko Stoffers, James Gross, Klaus Wehrle
Distributed Systems

58

