
INET Framework Development

András Varga

OMNeT++ Workshop

March 21, 2011
Barcelona, Spain

INET Development

A new version of INET is cooking!

 “integration” branch on github

1. Change in version numbering

2. What’s been implemented/changed so far

3. Modularization of the codebase

4. Integration of forks and extensions

5. Documenting INET

6. Validation / Regression Testing

Version Numbering

• Traditional: “date” releases, e.g. INET-20100723

• Drawbacks of “date” releases:

– cannot express code state (unstable/stable)

– cannot express level of compatibility with previous releases

• New versioning scheme: <major>.<minor>.<patch>

– even/odd numbering (even=stable, odd=development)

– current releases are 1.99.x (unstable)

– working towards 2.0.0 (stable)

INET Development Branch /1

TCP model:

• TCP_lwIP: a new TCP module that directly wraps the lwIP stack

– Note: we also have NSC (Network Simulation Cradle) support in INET

• transfer mode:

– former sendQueueClass / receiveQueueClass parameters

– now controlled by the app (via a control info field); works across all three TCP models (native OMNeT++,
lwIP, NSC)

– TCP_TRANSFER_BYTECOUNT, TCP_TRANSFER_OBJECT, TCP_TRANSFER_BYTESTREAM (new)

• application-imposed TCP flow control, i.e. implementation of "socket read" calls

– experimental code, not yet released or in the "integration" branch

INET Development Branch /2

New models, model improvements:

• signal-based statistics recording: in most modules, cOutVector and recordScalar()
was replaced with emitting signals and @statistic properties in NED files

• BGPv4 model, contributed by Helene Lageber

• point-to-point Ethernet links can now use normal DatarateChannels (EtherMAC's
txrate parameter was removed)

• “global ARP”, backported from INETMANET

• multi-radio support, backported from INETMANET

• RTP model: refactored to make use msg files and a controlinfo-based interface
toward apps

• OSPF model: mass renaming and code formatting

• some improvements implemented in INETMANET taken over into INET (also to
decrease INETMANET maintenance cost)

INET Development Branch /3

NED Refactoring:

1. support for more than one type of tcpApp and udpApp in StandardHost

– StandardHost’s tcpAppType/udpAppType parameter was eliminated

– tcpApp[] is now declared as:

 tcpApp[numTcpApps]: <> like TCPApp;

 and module types can be set using type-name in the ini file:

 **.tcpApp[0].type-name = "TCPBasicClientApp"

 **.tcpApp[1].type-name = "TCPEchoApp"

 **.tcpApp[*].type-name = "TCPSinkApp"

INET Development Branch /4

NED Refactoring:

2. Consistency: module interfaces were renamed to start with letter “I”:

 BasicMobility  IMobility

 TCPApp  ITCPApp

 UDPApp  IUDPApp

 SCTPApp  ISCTPApp

 MacRelayUnit  IMacRelayUnit

 Radio  IRadio

 Ieee80211Mgmt  IIeee80211Mgmt

 OutputQueue  IOutputQueue

 INetworkInterface  IWiredNic

INET Development Branch /5

NED Refactoring:

• Problem: we had countless variants on StandardHost,Router, etc:

– StandardHost, StandardHostWithDLDuplicatesGenerator,
StandardHostWithDLThruputMeter, StandardHostWithULDropsGenerator,
StandardHostWithULThruputMeter, BustHost, TCPSpoofingHost, MobileHost,
MFMobileHost, WirelessHost, WirelessHostSimplified,...

– Router, ExtRouter, OSPFRouter,...

– WirelessAP, WirelessAPSimplified, WirelessAPWithEth, WirelessAPWithEthSimplified, ...

• Attempt to unify them:

– added hook modules (IHook) into NetworkLayer where DropsGenerator,
DuplicatesGenerator and other can be substituted

– elements of StandardHost made replaceable via “like” and module interfaces

• for example, “tcp” in StandardHost is now declared as:
 tcp: <tcpType> like ITCP
and tcpType can be “TCP”, “TCP_lwIP”, “TCP_NSC”

– most existing modules can be replaced with the revised StandardHost, Router, AccessPoint
modules

Modularization

• Motivation:

– long build times in INET/INETMANET

• also: linker command-line limit reached on Windows

– unclear structure, unwanted cross-dependencies creeping in

• Problems are described in:

– “Towards a modularized INET”.
Alfonso Ariza (Univ. de Malaga),
Juan-Carlos Maureira (INRIA),
International OMNeT++ Workshop.
Malaga, Spain, 2010.

Modularization: “Project Features”

• OMNeT++ built-in support for project modularization

– currently experimental, to appear in 4.2 beta 2

• A “project feature”:

– source code (modules, etc) that can be enabled and disabled for a build

• granularity: folder

• includes NED, C++ and msg files

• may add defines (e.g. -DWITH_IPv6) and libraries (e.g. -lavcodec) to the build

– may require other features (dependency handling)

– disabled feature:

• its NED files are excluded (inaccessible from the rest of the project)

• folder is (are) excluded from C++ build

• its header files cannot be (easily) #included from the rest of the project

Project Features in the IDE

• Available in the Project
Properties dialog

• Shows feature descriptions,
lets the use enable/disable
features

• Dependency handling

• Modifies CDT configuration
and NED excluded package
list

Modularization: .oppfeatures

Features are described in the .oppfeatures file in the project root

<features>
 ...
 <feature
 id="IPv6"
 name="IPv6 protocol"
 description = "Basic IPv6 support"
 requires = ""
 labels = "protocols"
 nedPackages = "inet.networklayer.ipv6
 inet.networklayer.autorouting.ipv6
 inet.networklayer.icmpv6
 inet.nodes.ipv6"
 extraSourceFolders = ""
 compileFlags = "-DWITH_IPv6"
 linkerFlags = ""
 />
 ...
</features>

Project Features

• Additional advantages

– allows integration of “problematic” models

• doesn’t compile on all platforms

• requires exotic libraries

• rarely used

  can be turned off when not used

– can be the first step when you want to factor out parts of a project into a
separate project

Integration of Forks and Extensions

Candidates for integration into INET as “features”:

– xMIPv6

– VoIPTool ?

– HttpTools ?

– routing protocols in INETMANET ?

– MiXiM ?

– INET-HNRL ?

– ...

– ...

Help in reviewing and/or integrating these
extensions will be welcome!

Documentation

• INET Manual

– concepts, architectural overview

– high-level protocol descriptions

– useful for newcomers

– mostly TBD

• Neddoc

– useful as reference

INET Manual

• Repo: github.com/inet-framework/inet-doc (LaTeX)

• Working Table of Contents:

• Volunteers welcome!

1. Introduction

2. Using the INET Framework (incomplete)

3. Node Architecture (incomplete)

4. Point-to-Point Links (TBD)

5. The Ethernet Model (incomplete)

6. The Radio/Wireless Infrastructure (TBD)

7. The 802.11 Model (TBD)

8. Node Mobility (TBD)

9. IPv4 (incomplete)

10. IPv6 and Mobile IPv6 (TBD)

11. The UDP Model (TBD)

12. The TCP Model (TBD)

13. The SCTP Model (TBD)

14. Internet Routing (TBD)

15. The MPLS models (TBD)

16. Applications (TBD)

17. History

TODO:

- ad-hoc routing protocols (INETMANET)

- ...

Validation / Regression Testing

• Needed for credibility

• Fingerprints are too fragile

• Instead: simulation + result evaluation script

– Example criteria:

• “TCP overall throughput should be between 50kbs and 52kbps”

• “Hosts get a fair share of the throughput, e.g. each within 10% of the average”

– Evaluation script: use GNU R (r-project.org) with the “omnetpp” R package
(github.com/omnetpp/omnetpp-resultfiles)

• R: “a free software environment for statistical computing and graphics”: linear and
nonlinear modelling, statistical tests, time series analysis, classification, clustering, etc.

• the “omnetpp” package provides loadDataset() and other functions

• loadDataset(): loads vector and scalar files in whole or filtered

• loaded data can be processed and evaluated using R’s capabilities

INET Roadmap

• Release OMNeT++ 4.2

– includes the “project features” feature

• INET

– 1.99.0 (released)

– 1.99.1, 1.99.2, ... -- development / testing versions

– 2.0.0 – stable

• still without (many) extensions integrated

• extension-friendly

– 2.1.x – unstable

– 2.2.0 -- integrates many extensions (to be decided)

