
Two simple tools for testing wireless communication
modules in OMNeT++

Laura Marie Feeney
Communication Networks and Systems Lab

Swedish Institute of Computer Science
lmfeeney@sics.se

ABSTRACT
This code contribution abstract presents two simple OM-
NeT++ modules, ScriptApplLayer and EnsembleApplLayer,
which can be used for systematic testing of modules that
model the operation of wireless NIC’s. The main purpose
of this document is to emphasize the importance of repro-
ducible unit and ensemble tests, by describing how these
modules were used in practice to demonstrate issues in long-
standing code.

1. INTRODUCTION
Simulation enables performance evaluations that would oth-
erwise be logistically difficult, especially for wireless commu-
nication. However, simulation also poses considerable risks,
because an error in the design and implementation of simu-
lation code can make the results meaningless or misleading.
Researchers who expect to produce results of relevance to
industry must address this concern. From this perspective,
reliability of results can be more important than extending
functionality.

Testing is particularly important for modular open source
software like OMNeT++, where a simulation may be built
out of components from variety of sources. For this reason,
module developers should not merely assert that software
has been tested, but also provide reproducible unit and en-
semble tests, along with code. This practice not only allows
potential users to judge whether code has been adequately
tested, but also form the basis for regression or comparison
tests if the module is extended or used in another context.

This abstract presents two simple OMNeT++ modules, Scrip-
tApplLayer and EnsembleApplLayer, which can be used for
systematic testing of low level wireless communication pro-
tocols. The goal is not to discuss the details of the modules
themselves (they are trivial). Instead, the goal is to high-
light the value of such tools, by describing how they were
used to find a bug in long-standing code and to check the
internal consistency of statistics collection.

2. SCRIPTAPPLLAYER MODULE
As the name implies, ScriptApplLayer is an application
layer module that generates outbound messages according
to a schedule specified in a script file. It enables the user to
efficiently create a set of unit tests for wireless NIC (MAC
and signal processing) modules, where each test is a sim-
ple scenario with specific timing constraints. The Scrip-

tApplLayer takes as a parameter the name of a text file,
containing a time-ordered list of transmissions.

time src-host-id dest-host-id

1.0 1 0

1.435 2 0

Figure 1: Example script script31.

3. USING SCRIPTAPPLLAYER
The ScriptApplLayer is useful for creating unit tests, es-
pecially for MAC layer protocols. This can be done using
omnetpp.ini to build up an automated test suite that gen-
erates log and result files for each test.

[Run 31]

output-vector-file = omnetpp_31.vec

sim.host[*].appl.scriptFile = "script31"

sim.numHosts = 3

sim.host[*].test-specific.param = value

Figure 2: omnetpp.ini file.

The manual checking of event logs and result files for each
test to verify that the modules are behaving as expected is
tedious and time-consuming, making it important to record
validated output for future use. The verification task is sur-
prisingly much easier if the protocol timing parameters are
set to large, round values; it is much easier to check that
events occur at multiples of e.g. 1 or .1 seconds. These long
intervals also make it much easier to create scripts with se-
quences of interleaved events. In general, using CmdEnv and
scripts (e.g. sh or python) is far more efficient than any
visual environment.

The ScriptApplLayer was used in validating ucsma, a “uni-
versal”CSMA MAC layer module, which was combined with
the SnrDecider module of the mobility-fw to create a NIC.
As contributed code in OMNeT++ 3.x, this is part of a long
established codebase. However the tests show an anomalous
behavior in SnrDecider, whereby a radio can transmit and



0

data

data

ack

1 2

Figure 3: Test 31. Interfering transmission (CCA
during Rx-Tx turnaround).

receive at the same time. (Note that this example should
not be taken as any criticism of the developers’ work; it is
simply used to highlight the power of scripted scenarios for
unit testing.)

Because the MAC layer has a relatively small number of
operations and states, it is straightforward to list the inter-
actions between hosts and systematically generate scripts to
test them. Test 31 examined the case of a sender (host[2])
doing clear channel assessment (CCA) during the the rx-tx
turnaround time of a receiver (host[0]) that is preparing to
send an ACK (to another sender, host[1]).

In this test, we expect host[0] to record receiving a frame
from host[1] and transmitting the ACK. But because host[2]
does CCA for its pending frame during host[0]’s rx-tx turn-
around and therefore begins transmitting its own frame,
host[1] does not receive the ACK and records a failed trans-
mission (retry limit set to zero). And because host[0] is
transmitting the ACK during part of host[2]’s data trans-
mission, it does not receive the data frame from host[2],
which should record a failed transmission.

Yet in the omnetpp.sca file, we see:

scalar "sim.host[0].nic.mac" "dataForMe.samples" 2

scalar "sim.host[0].nic.mac" "controlOut.samples" 2

scalar "sim.host[1].nic.mgmt" "pktFail.samples" 1

scalar "sim.host[2].nic.mgmt" "pktFail.samples" 0

That is, host[0] seems to have received two frames and sent
two ACKs: host[1] records a failure, because the ACK was
lost, but host[2] does not. Examining the event logs shows
that the SnrDecider accepted the frame because it did not
check whether the radio was in the receive state for the entire
frame duration.

Given this information, the bug was relatively easy to find
and module SnrDeciderFix corrects the problem. It is also
easy to check that the fix doesn’t introduce new bugs by
comparing output of all tests against previously validated
output.

4. ENSEMBLEAPPLLAYER
The EnsembleApplLayer is an application layer module that
supports ensemble tests, which allow the user to confirm that
a protocol demonstrates predicted scaling behaviors.

Two modes of operation: ”exponential” and ”synchronized”

are supported. For exponential traffic, each host generates
packets with uniformly distributed destinations and expo-
nentially distributed interarrival times. For synchronized
traffic, every host but one (host[0]) periodically and simul-
taneously generates a packet, destined for host[0].

5. USING ENSEMBLEAPPLLAYER
The synchronized pattern of EnsembleApplLayer is useful
for checking that MAC layer backoff behaves as expected,
since it is easy to write an omnetpp.ini that defines a se-
quence of tests with an increasing number of competing
senders. It can also be used for simple tests of e.g. satu-
rated and interfering links.

The module is also useful for doing consistency checking on
output statistics, as is seen from an example from testing
of ucsma. It is possible to define a number of tautologies,
expressing the properties of statistics summed over all hosts.
For example:

pktIn + pktDup - pktOut = controlOut - controlIn.

Both sides of this equation express the number of lost ACKs.
The lhs is the difference between the number of frames recorded
as successfully received (including duplicates) and success-
fully transmitted. The rhs is the difference between the
number of control frames recorded as sent and received.

6. IMPLICATIONS FOR OMNET++
Working with these testing tools has highlighted one area in
which OMNeT++ might be extended to make testing easier:
random number generators. The author hopes to raise these
issues for further consideration.

It is easy to assign a fixed seed to each sequence of tests,
since there is no need for true “randomness”. But building
unit tests would be easier if it were more straightforward
to manage per-module RNG’s, since each module’s behav-
ior would depend only on the scenario, rather than on the
number of hosts using a shared sequence of RNG values.

For the unit tests above, the MAC layer was modified to
(optionally) use a local RNG. The seed for each RNG was
selected by trial and error, so that a pair of hosts had a brief
sequence of identical backoff values. Since the unit tests
consist of at most a few transmissions, doing this manually
is feasible (but annoying).

In this context, it would also also be helpful to introduce
a “non-RNG” plug-in, allowing a user to script the values
returned by a particular module’s RNG. This would consid-
erably simplify creating tests requiring very specific backoff
behavior, for example. Such a plugin is obviously rather
fragile, but it would be used only in unit tests, where mod-
ule behavior is being validated in detail.

7. CONCLUSION
This code contribution abstract has advocated unit and en-
semble testing for OMNeT++ modules and described the
use of two modules to support testing of low level communi-
cation protocols. The source code is available at www.sics.
se/nets/software.


