
INET Framework Evolution

András Varga

OMNeT++ Workshop

March 23, 2012
Desenzano, Italy

1

Topics from the last Workshop

2

What do we want INET to be?

• What should be INET’s role and scope?

– SOLID FOUNDATION for network research

• well-tested set of standard protocols (IPv4/v6, TCP, UDP,
Ethernet, 802.11, ...)

• infrastructure (radio, mobility, configuration, failure/recovery, statistics,

cross-layer communication,...)

• serve as a base for active projects: INETMANET,
OverSim, Veins, ...

• absorp and integrate useful model code from finished or inactive projects, and
maintain them as part of INET (e.g. VoIPTool, HttpTools)

3

What We Need for INET

1. Protocols need to be reviewed

– for correctness and completeness

2. Infrastructural features

– e.g. modularity, failure/recovery, flexible network
configuration, battery, obstacles, etc.

3. Documentation

4. Testing / validation

– to build confidence in the models

5. Animation/visualization capability

6. More, and more organized, community participation

4

What Happened Since Last Time?

1.99.0 (Mar 3, 2011)

1.99.1 (May 27, 2011)

1.99.4 (March 20, 2012)

1.99.2 (Nov 18, 2011)

1.99.3 (Feb 22, 2012)

2.0

.

.

.
For 2.0:

• revise IPv6; add node failure/recovery, DiffServ

infrastructure, battery, IPv6 network configurator;

integrate DHCP, STP; merger with MiXiM (!)

• maybe: revise xMIPv6, OSPF, BGP, MPLS/RSVP/LDP;

integrate more contributed components

revised NED for hosts, routers, NICs; signal-based statistics

recording; multi-radio; TCP improvements (e.g. added lwIP);

added BGPv4

revised IPv4 multicast routing; added IGMPv2, network

configurator for IPv4 (replaces .irt files and FlatNetwork-

Configurator)

revised IPv4 (fragmentation, multicast, etc.) and Ethernet;

UDP improved; test framework, ChangeLogs

introduced Project Features; revised host, router, AP, NIC

compound modules; added VoIPTool, xMIPv6

revised UDP; revised mobility models (sync with MiXiM);

revised apps parametrization; added HttpTools

5

PROTOCOL REVIEWS

6

Protocol Reviews

Reviewed/extended:
– TCP (review; added SACK;

TCP_lwIP, TCP_NSC)

– UDP (bugfixes, refactoring;
socket options support; multicast
revised)

– IPv4 (bugfixes, refactoring;
multicast revised; added IGMP)

– Ethernet (extensive refactoring,
bugfixes; 40G/100G Ethernet
implemented)

Planned reviews:
– IPv6

– IEEE 802.11

– OSPFv2, BGPv4

– MPLS and related protocols

7

INFRASTRUCTURE

8

Infrastructure

Available

– Modularity*

• Project Features

– Statistics

• signal-based statistics
recording

– NED refactoring

• for consistency and
extensibility

– Flexible network
configuration* (IPv4)

– Multi-radio

Missing (in INET)

– Detailed physical layer
modeling (MiXiM)

– Node failure/recovery

– Battery

– Obstacles, etc.

9

Modularity: Project Features

Currently 39 features:

• 23 protocols

• 16 examples

10

Flexible Network Configuration

GOAL:

 Replace routing files and FlatNetworkConfigurator
 with something better...

• Problem with FlatNetworkConfigurator:

– all-or-nothing

– no subnetting

– per-node addresses instead of per-interface

– ...

• Problem with routing files

– (on the next slide)

11

Flexible Network Configuration

• Problem with routing files (.irt/.mrt):

– too many of them (one per router/host)

– contains concrete IP addresses and
interface names:

like a puzzle!
Good luck getting an overview without pen and paper

12

Flexible Network Configuration

The new network configurator:

• Replaces other configurators AND routing files

• For manual configuration:

– all configuration input in one file, not in 1000!

– symbolic names instead IP addresses wherever possible!

– more intuitive interface selection (“the interface towards “router7” instead
of interface name “ppp2”)

• For automatic configuration:

– per-interface addresses, subnetting support, all steps of configuration
optional, optimized routing tables,...

• All config in a single XML file

13

DOCUMENTATION

14

Documentation

• INET Manual:

– chapters already covered: base architecture, IPv4, Ethernet,
PPP, UDP, TCP

– note: source code of components needs to be
reviewed before documentation can be written

– help welcome

• NED documentation:

– some of the models are fairly well documented

– others have no or inappropriate (copy/pasted) comment block

15

TESTING AND VALIDATION

16

INET Test Suite

1. Smoke tests

2. Fingerprint tests

3. Unit tests

4. Module tests

5. Statistical tests

17

Purpose: to create and maintain confidence in the models

 ONE KIND OF TEST DOESN’T CUT IT!

Smoke Tests

• Run the simulation for a while,
and see if it crashes or stops with
a runtime error

– simplest kind of test, provides low confidence in the models

– crude but easy to implement

– INET smoke tests:

• smoketest script + csv file (columns: working-dir, command-to-run)

• script runs all example simulations with cpu-time-limit=3s

18

Fingerprint Tests

• “What is fingerprint again?”

– hash of certain properties of the simulation,
currently (time, module ID) for each event

– designed to change if simulation trajectory changes

– suitable for regression testing

• Fingerprint tests:

– fingerprints script; runs example simulations plus
 some test simulations; input in CSV

workingdir, args, simtimelimit, fingerprint
/examples/adhoc/ieee80211/, -f fingerprints.ini -c Ping1 -r 0, 1000s, 621c-2640
/examples/adhoc/ieee80211/, -f omnetpp.ini -c Ping1 -r 0, 100s, 0cad-2371
/examples/adhoc/mf80211/, -f fingerprints.ini -c Ping1 -r 0, 1000s, a867-4a02
/examples/bgpv4/BGP3Routers/, -f omnetpp.ini -c config1 -r 0, 1000s, 3fac-2c12
/examples/bgpv4/BGPandOSPF/, -f omnetpp.ini -c config1 -r 0, 1000s, 5161-8ab8
/examples/ethernet/arptest/, -f omnetpp.ini -c ARPTest -r 0, 500s, e1f3-3ca1
/examples/ethernet/lans/, -f bus.ini -c BusLAN -r 0, 100s, 9999-0785
 19

Unit Tests

• For testing individual classes

– MACAddress, IPv4FragmentationBuffer,
TCPMsgBaseReceiveQueue, ByteArrayPacket,
HeaderSerializer, Coords, ErrorRateModel, etc.

– use OMNeT++ unit test framework (opp_test) and .test
files

%description:
Tests TCPMsgBasedSendQueue, TCPMsgBasedRcvQueue classes

%activity:
...
enqueue(sq, "msg1", 100); // 1000..1100
enqueue(sq, "msg2", 400); // 1100..1500
...

%contains: stdout
[1000..1000), 0 packets
rcv_nxt=1000 0 msgs
SQ:enqueue("msg1", 100): --> [1000..1100), 1 packets
SQ:enqueue("msg2", 400): --> [1000..1500), 2 packets
SQ:enqueue("msg3", 600): --> [1000..2100), 3 packets
...
 20

Module Tests

• Functional test of individual modules,
typically protocol implementations

– send the module some input, then check
how it reacts (messages and/or log output)

– OMNeT++ unit testing framework (opp_test) can be used

– we are also considering Python for scripting

21

Statistical Tests

• Statistical regression tests

– check that model produces statistically
the same results as before

• e.g. perform 100 runs “before” and “after” a change, and use Student
t-test [for mean] and F-test [for variance] to check that both set of
results are from the same distribution

implementation: inet/tests/misc/statistical/test.R

• Validation tests

– e.g. performance tests: throughput corresponds
to expectation (theoretical values, physical
measurements, or other simulator’s results)

• we have such tests for Ethernet (implemented using R)

• TODO: reuse results of 802.11 model validation workshop paper

22

Automated Build Testing

Benefits:

• build errors and broken test cases are usually detected earlier

– (even though our INET tests run only once a day)

• tests for you on other platforms

– i.e. develop on Windows, test on Linux or vice versa

• it is for the lazy

– after a change, it is less effort to push “Start Build” button on a web page
than run the test suite manually on your own computer!

23

Automated Build Testing

We use:

• Packaged for multiple Linux distros, Windows, OS X, etc. (we use it on
Ubuntu)

• Web-based administration; builds can be triggered by scheduling (cron), by
commit, or manually; lots of plug-in extensions for various purposes (400+)

• How we use it for INET: checks out latest INET (given branch) from github
repo, builds it with different feature combinations, runs test suite, reports
results; runs once every night

• IF YOU WANT TO SET UP YOUR OWN JENKINS: our Jenkins config file is
available from the INET repo

“An extendable open source continuous integration server”

http://jenkins-ci.org

24

Automated Build Testing

25

Automated Build Testing

26

COMMUNITY INVOLVEMENT

27

Community Involvement

We need to agree on:

• how do new protocols make it into INET?

– code review

– formal requirements* (documentation, commenting, code style, existence

of examples and tests)

• how do patches make it into INET?

– formal requirements (clear statement of what it solves, etc.)

– code review

– tests* (to demonstrate that it solves the problem, and doesn’t break anything

else)

 * if author does not provide them, someone else has to do it

28

Community Involvement

• The OMNeT++ team can do much, but...

– some tasks require domain knowledge, i.e. help from the
community

• code review (for conformance)

• validation

• setting priorities

• Forum, tools

– inetframework-devel@googlegroups.com

– Gerrit code review tool (if proves useful)

– Is there interest / willingness to participate?

29

ANIMATION

30

Animation

What do we want to animate/visualize?

– frame transmissions, wired/wireless

• wireless: dest node? successful?

– node movement, e.g. trajectories

– higher-level information: reachability, routing, overlay network
topology, ...

– vital statistics (as annotation, graph, chart, gauge or meter)

– ...

– [you name it]

31

Animation

• Animation Framework

– extends the IDE

– input: eventlog files + model specific files

– like an interactive video player

• time linear/nonlinear

• content can be filtered

• can be interactive!

– extensible with model- (INET-) specific animations

• support for new animation effects, visualizations, layers, interactivity,
etc.

• Java API

• can be deployed with the model

32

Animation Demo: Aloha

33

Animation Demo: Flight Terminal

34

Animation Demo: 802.11

35

Animation Demo: Dumbbell

36

Animation Demo: Routing

37

Animation Demo: Routing

38

Animation Demo: OLSR Routing

39

Animation Demo: DYMO Routing

40

Discussion

We only have a few minutes now, but

we can continue in the
Closing Session, 17.30-18.00

41

