
Cross-Platform Protocol
Development Based on OMNeT++

Stefan Unterschütz, Andreas Weigel and Volker Turau

SIMUTools 2012: OMNeT++ Workshop
23rd March, 2012

TUHHTUHHInstitute of TelematicsInstitute of Telematics
Hamburg University of TechnologyHamburg University of Technology

1

Introduction

IntroductionIntroduction

Motivation

Simulation is indispensable
for the development of

(wireless) network protocols.

OMNeT++ is a powerful tool for
simulations of network protocols.

Base Station

However:
Re-implementation of protocols for a target platform is

time-consuming and error-prone

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 11

IntroductionIntroduction

Motivation

Simulation is indispensable
for the development of

(wireless) network protocols.

OMNeT++ is a powerful tool for
simulations of network protocols.

Base Station

However:
Re-implementation of protocols for a target platform is

time-consuming and error-prone

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 11

IntroductionIntroduction

Introduction

CometOS,
a component-based, extensible, tiny

“operating system”

Design Goals
� Single code base for protocols, whether running

simulations or executing on target hardware
� “Lightweight enough” for resource constrained

hardware
� Flexibility, extensibility, avoidance of code redundancy
� Thereby: speed up protocol development and produce

safe code

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 22

IntroductionIntroduction

1 Introduction

2 Architecture and Concepts

3 Feasibility

4 Conclusion

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 33

2

Architecture and Concepts

Architecture and ConceptsArchitecture and Concepts

Architecture

User Code

Appl.

Rout.Rout.

ForkNBH

CSMA

CometOS Core
Module

InputGate

OutputGate

Message

Object

CometOS
HIL

ATmega128RFA1 other platforms

SchedulerMAC AL

co
m

pl
et

el
y

in
de

pe
nd

en
t

pl
at

fo
rm

in
de

pe
nd

en
t

platform dependent

Hardware platform

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 44

Architecture and ConceptsArchitecture and Concepts

Architecture

User Code

Appl.

Rout.Rout.

ForkNBH

CSMA

CometOS Core
Module

InputGate

OutputGate

Message

Object

CometOS
HIL

ATmega128RFA1 other platforms

SchedulerMAC AL

co
m

pl
et

el
y

in
de

pe
nd

en
t

pl
at

fo
rm

in
de

pe
nd

en
t

platform dependent

Hardware platform

User Code

Appl.

Rout.Rout.

ForkNBH

CSMA

Module

InputGate

OutputGate

Message

Object

MAC AL

CometOS
Adapter

O
M

N
eT

++

co
m

pl
et

el
y

in
de

pe
nd

en
t

OMNeT++ simulation

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 44

Architecture and ConceptsArchitecture and Concepts

Gates and Message Passing

Message handlers are executed non-preemptively
(millisecond precision)

� Adoption of OMNeT++ message and gate concept
� Added type safety

� Gates instantiated with a certain message type
� Connections between gates are checked at compile time
⇒ dynamic_casts can be avoided

� Decrease of boilerplate code
� Gates and self-messages directly bound to handler methods
� No handleMessage() dispatch code necessary

� User-defined messages
� Created by deriving from base class
� Basic message types provided: Request/Confirm, Indication

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 55

Architecture and ConceptsArchitecture and Concepts

Message Passing (2)
class MyMsg: public Message { } ;

class MyReceiver :
public Module {
public :

InputGate <MyMsg> gate In ;

MyReceiver () :
ga te In (this ,

&MyReceiver : : handle ,
" gate In ")

{ }

void handle (MyMsg *msg) {
delete msg ;

}
} ;

class MySender :
public Module {
public :

OutputGate <MyMsg> gateOut ;

MySender () :
gateOut (this , " gateOut ")

{ }
void i n i t i a l i z e () {

schedule (new Message ,
&MySender : : t r a f f i c , 5 0 0) ;

}
void t r a f f i c (Message *msg) {

gateOut . send (new MyMsg) ;
delete msg ;

}
} ;

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 66

Architecture and ConceptsArchitecture and Concepts

MAC abstraction layer

� Goal: Basis for arbitrary, platform-independent MAC
protocols (CSMA, TDMA, LPL, LPP)

� Should support Link-Layer ACKs, CCA, Random Backoffs
� Hardware-supported functions of 802.15.4 transceivers

MAL

CSMA TDMA BoxMAC . . .

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 77

Architecture and ConceptsArchitecture and Concepts

Airframes and Serialization
� Actual over-the-air packet: Managed byte array (Airframe)
� Support for serialization of simple types
� User-defined types (structs, classes):
⇒ serialization user-provided

struct NwkHeader {
uint16_t dst ;
uint16_t source ;

}
void s e r i a l i z e (ByteVector &bu f fe r , const NwkHeader &value) {

s e r i a l i z e (bu f fe r , value . ds t) ;
s e r i a l i z e (bu f fe r , value . source) ;

}
. . .
NwkHeader nwk (SINK_ADDR, ge t Id ()) ;
request−>getA i r f rame () . s e r i a l i z e (nwk) ;

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 88

Architecture and ConceptsArchitecture and Concepts

Initialization

For OMNeT++
⇒ .ned, .ini files

/ / Setup f o r OMNeT++ i n NED language
/ / (skipped d e c l a r a t i o n o f modules)
network Network {

submodules :
s : MySender ;
r : MyReceiver ;

connections :
s . gateOut −−> r . gate In ;

}

For Hardware Platforms:
⇒ C++ initialization file

/ / Setup f o r Hardware
MySender s ;
MyReceiver r ;

i n t main () {
s . gateOut . connectTo (r . ga te In) ;
cometos : : i n i t i a l i z e () ;
cometos : : run () ;
return 0;

}

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 99

Architecture and ConceptsArchitecture and Concepts

Base Station Support

� Currently under development
� Python wrapper for existing CometOS C++ code (SWIG)

� Reuse protocol implementation for a base station
� Usable with real testbed or OMNeT++ real-time simulation

and TCP/IP connector
� Integration of powerful remote access methodology

� Read/write of variables
� Remote execution of methods
� Subscribe to events

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 1010

Architecture and ConceptsArchitecture and Concepts

Base Station Support
class MyModule :
public RemoteModule {
public :

MyModule (const char* name) :
RemoteModule (name) { }

void i n i t i a l i z e () {
declareRemote (&MyModule : : add ,

" add ") ;
}
uint16_t add (uint8_t &a ,

uint8_t &b) {
return a+b ;

}
} ;
MyModule m(" myModule ") ;

r =RemoteModule (" myModule ") ;
r . declareRemote (" add " ,

u in t16_ t ,
u in t8_ t ,
u i n t 8 _ t)

pr in t r . add (18 , 11)
>>> 29

↑ Python console

← CometOS-Module

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 1010

Architecture and ConceptsArchitecture and Concepts

Typical Development Steps

OMNeT++ Simulation

Base Station

OMNeT++ Simulation

C++/Python
Base Station

Real-World Deployment

C++/Python
Base Station

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 1111

3

Feasibility

FeasibilityFeasibility

Resource Demand

� Minimum example (MySender, MyReceiver)

MCU Flash RAM

ATmega128RFA1 4148 Bytes 145 Bytes

LPC1763 3136 Bytes 120 Bytes

� 7 modules, forked protocol stack

MCU Flash RAM

ATmega128RFA1 10 kB 649 Bytes

LPC1763 7 kB 580 Bytes

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 1212

FeasibilityFeasibility

Simulation Accuracy
� Comparison of RTTs from field installation (93 nodes at

heliostat power plant in Jülich) and simulation for different
number of hops

1 2 3 4

10

20

30

40

hops

ro
un

d-
tr

ip
tim

e
[m

s]

Fieldtest Sim

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 1313

4

Conclusion

ConclusionConclusion

Conclusion, Future Work

� CometOS meets its design goals
� Protocol implementations reusable on target hardware
� “Lightweight enough”

� Field test at heliostat power plant in Jülich, Germany
successfully running since May 2011

� Current and Future Work:
� Smart Metering application based on CometOS
� Improvement and extension of interface to driver layer
� Direct support for logging and statistics recording and

reporting

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 1414

Cross-Platform Protocol
Development Based on OMNeT++

Stefan Unterschütz, Andreas Weigel and Volker Turau

SIMUTools 2012: OMNeT++ Workshop
23rd March, 2012

Andreas Weigel
Research Assistant

Phone +49 / (0)40 428 78 3746

e-Mail andreas.weigel@tu-harburg.de

http://www.ti5.tu-harburg.de/staff/weigel

TUHHTUHHInstitute of TelematicsInstitute of Telematics
Hamburg University of TechnologyHamburg University of Technology

mailto:andreas.weigel@tu-harburg.de
http://www.ti5.tu-harburg.de/staff/weigel

Resource Demand Revisited

� RAM usage depends on target architecture (e.g., 8 bit vs
32 bit)

� Values for 32 bit MCU
� Module: 8 Bytes
� InputGate: 16 Byte
� OutputGate: 4 Byte
� RemoteModule: 30 Bytes (including Module)
� Standard modules Layer and Endpoint with 4 and 2 Gates

require 70 Bytes and 50 Bytes

� ROM usage even more depends on architecture, instruction
set, compiler etc.

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 1515

Experiment Setup

� Packets with 50 Bytes payload
� 100 measurements per node
� 802.15.4 (2.4 GHz ISM band, 250 kbps)

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 1616

Cross-Layer Support

Communication between non-adjacent modules?

� Similar to OMNeT++’s ControlInfo or ns3’s object
aggregation:

� Attach arbitrary objects to Messages and Airframes
� Example: Setting MAC txPower from higher layer:

/ / A p p l i c a t i o n : se t t x power to −20 dBm
request−>add (new MacTxPower (−20)) ;
. . .
/ / MAC: use MacTxPower i f se t
MacTxPower* txPower= request −>get <MacTxPower > () ;
i f (txPower != NULL) { . . . }

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 1717

Cross-Layer Support

Communication between non-adjacent modules?

� Similar to OMNeT++’s ControlInfo or ns3’s object
aggregation:

� Attach arbitrary objects to Messages and Airframes
� Example: Setting MAC txPower from higher layer:

/ / A p p l i c a t i o n : se t t x power to −20 dBm
request−>add (new MacTxPower (−20)) ;
. . .
/ / MAC: use MacTxPower i f se t
MacTxPower* txPower= request −>get <MacTxPower > () ;
i f (txPower != NULL) { . . . }

Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++Andreas Weigel Cross-Platform Protocol Development Based on OMNeT++ 1717

	Introduction
	Architecture and Concepts
	Feasibility
	Conclusion
	Appendix

