Phase-type Distributions for Realistic Modelling in Discrete-Event Simulation

Philipp Reinecke and Gábor Horváth

philipp.reinecke@fu-berlin.de
hgabor@webspn.hit.bme.hu
Motivation: The Restart Method

- Restart: A client sends a request. If there is no response within a reasonable time, the request is repeated.
- Restart may reduce response-times.
- Question: When should the client restart the request?
 - Small timeout \rightarrow Low response-times, but also high additional system load
 - Large timeout \rightarrow Low additional load, but high response-times
- Application scenarios: Service-Oriented Systems (SOAs), WMNs, etc.
- What happens if everyone does it?
Evaluation Approaches

Analysis

\[F(x) = \int_0^x f(u)du \]

Simulation

Experimental
Abstract methods give general results, but are often not realistic.

Practical methods are more realistic, but give less general results.

→ Combine methods to obtain realistic and general results.

Requirements:

- Phenomena (e.g. response-times) must be modelled.
- Models are required.
- ... must be accurate.
- ... must be fast.
- ... must be suitable for all abstraction levels.

Ideal models: Phase-type (PH) distributions.
Phase-type distributions

- A PH distribution is the distribution of the time to absorption in a Markov chain with one absorbing state
- Examples:
 - Exponential distribution
 - Hyperexponential distribution
 - Erlang distribution
 - Hypoexponential distribution
PH-Distributions for Modelling

- Use PH distributions to model delays, response-times, failure-times, etc. in test-beds, simulations, and abstract models

- Advantages over other distributions:
 - Flexibility → Capture important system properties by fitting PH distributions to measurements
 - Generic representations → Catch-all routines for random-variate generation
 - Markovian representations → Suitable for analytical approaches

- Seldom used in simulation
 - little-known
 - difficult theory
 - little to no support in simulators
 - efficiency concerns
The Libphprng Library

- A library for generating random variates from PH distributions
- Part of the Butools collection

 http://webspn.hit.bme.hu/~butools

- Advantages:
 - easy to use
 - portable between simulators
 - fast
Libphprng features

- Shared library with small wrapper code for the uniform random number stream
- Application:
 1. Create BuToolsGenerator object for the distribution
 2. Register uniform random number stream
 3. Draw random variates
- For other simulators: Write your own wrapper
Random-variate generation by ‘playing’ the Markov chain

Costs depend on the structure and the algorithm . . . e.g. for a chain we do not need to randomly select the next state

Structures are not unique

Costs can be optimised by changing the structure

Libphprng implements efficient algorithms and optimises the structure for random-variate generation
Evaluation of quality and performance

Quality: Evaluation of restart timeouts

Different models:
- cPSquare
- Exponential distribution
- Lognormal distribution
- Phase-type distribution (50 phases)
Evaluation of quality and performance

Quality: Evaluation of restart timeouts

Different models:
- cPSquare
- Exponential distribution
- Lognormal distribution
- Phase-type distribution (50 phases)

Performance: Simple source/sink model
Evaluation: Quality

![Graph showing service time distribution with different models: Empirical (Histogram), cPSquare Model, Exponential Model, Lognormal Model, APH Model.]

- Density on the y-axis
- Service time (s) on the x-axis
- Graph comparison of different density models against empirical data
Evaluation: Quality

Response-time (s) vs Timeout (s) for different models:
- cPSquare Model
- Exponential Model
- Lognormal Model
- APH Model
Not all models capture the density well

Comparison of results: Only the PH model shows the existence of an optimal timeout
Evaluation: Performance

Simulation speed (ev/sec)

- Exponential
- Lognormal
- libphprng
- ArrivalProcess

Simulation speed ranges:
- 1e+06
- 2e+06
- 3e+06
- 4e+06
- 5e+06
- 6e+06
Evaluation: Performance

- Exponential
- Lognormal
- libphprng
- ArrivalProcess

% of simulation time
Libphprng is less efficient than the simpler models
Libphprng is more efficient than ArrivalProcess by Kriege et al. (2011) ... but only supports PH
Libphprng enables accurate and efficient modelling of distributions in simulations using PH distributions.

Libphprng is portable between simulators.

Available from:

http://webspn.hit.bme.hu/~butools
fin.