
Phase-type Distributions for Realistic Modelling

in Discrete-Event Simulation

Philipp Reinecke and Gábor Horváth

philipp.reinecke@fu-berlin.de

hgabor@webspn.hit.bme.hu

Motivation: The Restart Method

Restart: A client sends a request. If there is no response
within a reasonable time, the request is repeated

Restart may reduce response-times
Question: When should the client restart the request?

Small timeout → Low response-times, but also high additional
system load
Large timeout → Low additional load, but high response-times

Application scenarios: Service-Oriented Systems (SOAs),
WMNs, etc.

What happens if everyone does it?

1 / 12

Evaluation Approaches

Analysis

F (x) =
∫ x

0 f (u)du

Simulation

Experimental

2 / 12

Combined Approach

Abstract methods give general results, but are often not
realistic

Practical methods are more realistic, but give less general
results

→ Combine methods to obtain realistic and general results

Requirements:

Phenomena (e.g. response-times) must be modelled
Models are required
. . . must be accurate
. . . must be fast
. . . must be suitable for all abstraction levels

Ideal models: Phase-type (PH) distributions.

3 / 12

Phase-type distributions

λ1 λ2 λ3 λ4

A PH distribution is the distribution of the time to absorption
in a Markov chain with one absorbing state

Examples:

Exponential distribution
Hyperexponential distribution
Erlang distribution
Hypoexponential distribution

4 / 12

PH-Distributions for Modelling

Use PH distributions to model delays, response-times,
failure-times, etc. in test-beds, simulations, and abstract
models

Advantages over other distributions:

Flexibility → Capture important system properties by fitting
PH distributions to measurements
Generic representations → Catch-all routines for
random-variate generation
Markovian representations→ Suitable for analytical approaches

Seldom used in simulation

little-known
difficult theory
little to no support in simulators
efficiency concerns

5 / 12

The Libphprng Library

A library for generating random variates from PH distributions

Part of the Butools collection
http://webspn.hit.bme.hu/~butools

Advantages:

easy to use
portable between simulators
fast

6 / 12

Libphprng features

RandomSourceWrapper
Uniform Random

Source

Simulation Codelibphprng Core BuToolsGenerator

Shared library with small wrapper code for the uniform
random number stream

Application:

1 Create BuToolsGenerator object for the distribution
2 Register uniform random number stream
3 Draw random variates

For other simulators: Write your own wrapper

7 / 12

Efficiency concerns

λ1 λ2 λ3 λ4

Random-variate generation by ‘playing’ the Markov chain

Costs depend on the structure and the algorithm . . . e.g. for a
chain we do not need to randomly select the next state

Structures are not unique

Costs can be optimised by changing the structure

Libphprng implements efficient algorithms and optimises the
structure for random-variate generation

8 / 12

Evaluation

FS(t)Jobs

Clients Server

Responses

Evaluation of quality and performance

Quality: Evaluation of restart timeouts

Different models:

cPSquare

Exponential distribution
Lognormal distribution
Phase-type distribution (50 phases)

9 / 12

Evaluation

Evaluation of quality and performance

Quality: Evaluation of restart timeouts

Different models:

cPSquare

Exponential distribution
Lognormal distribution
Phase-type distribution (50 phases)

Performance: Simple source/sink model

9 / 12

Evaluation: Quality

Service time (s)

D
en

si
ty

0 1 2 3 4 5 6 7

0
2

4
6

Empirical (Histogram)
cPSquare Model
Exponential Model
Lognormal Model
APH Model

10 / 12

Evaluation: Quality

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5

R
es

po
ns

e-
tim

e
(s

)

Timeout (s)

cPSquare Model
Exponential Model
Lognormal Model

APH Model

10 / 12

Evaluation: Quality

Service time (s)

D
en

si
ty

0 1 2 3 4 5 6 7

0
2

4
6

Empirical (Histogram)
cPSquare Model
Exponential Model
Lognormal Model
APH Model

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5

R
es

po
ns

e-
tim

e
(s

)
Timeout (s)

cPSquare Model
Exponential Model
Lognormal Model

APH Model

Not all models capture the density well

Comparison of results: Only the PH model shows the
existence of an optimal timeout

10 / 12

Evaluation: Performance

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

Exponential Lognormal libphprng ArrivalProcess

S
im

ul
at

io
n

sp
ee

d
(e

v/
se

c)

11 / 12

Evaluation: Performance

 0

 20

 40

 60

 80

 100

Exponential Lognormal libphprng ArrivalProcess

%
 o

f s
im

ul
at

io
n

tim
e

11 / 12

Evaluation: Performance

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

Exponential Lognormal libphprng ArrivalProcess

S
im

ul
at

io
n

sp
ee

d
(e

v/
se

c)

 0

 20

 40

 60

 80

 100

Exponential Lognormal libphprng ArrivalProcess
%

 o
f s

im
ul

at
io

n
tim

e

Libphprng is less efficient than the simpler models

Libphprng is more efficient than ArrivalProcess by Kriege
et al. (2011) . . . but only supports PH

11 / 12

Conclusion

Libphprng enables accurate and efficient modelling of
distributions in simulations using PH distributions

Libphprng is portable between simulators

Available from

http://webspn.hit.bme.hu/~butools

12 / 12

fin.

