Phase-type Distributions for Realistic Modelling in Discrete-Event Simulation

Philipp Reinecke and Gábor Horváth

philipp.reinecke@fu-berlin.de
hgabor@webspn.hit.bme.hu

Motivation: The Restart Method

- Restart: A client sends a request. If there is no response within a reasonable time, the request is repeated
- Restart may reduce response-times
- Question: When should the client restart the request?
 - \blacksquare Small timeout \rightarrow Low response-times, but also high additional system load
 - \blacksquare Large timeout \rightarrow Low additional load, but high response-times
- Application scenarios: Service-Oriented Systems (SOAs), WMNs, etc.
- What happens if everyone does it?

Evaluation Approaches

Analysis $F(x) = \int_0^x f(u) du$

Experimental

Combined Approach

- Abstract methods give general results, but are often not realistic
- Practical methods are more realistic, but give less general results
- $\blacksquare \rightarrow$ Combine methods to obtain realistic and general results
- Requirements:
 - Phenomena (e.g. response-times) must be modelled
 - Models are required
 - ... must be accurate
 - ... must be fast
 - ... must be suitable for all abstraction levels
- Ideal models: Phase-type (PH) distributions.

Phase-type distributions

- A PH distribution is the distribution of the time to absorption in a Markov chain with one absorbing state
- Examples:
 - Exponential distribution
 - Hyperexponential distribution
 - Erlang distribution
 - Hypoexponential distribution

PH-Distributions for Modelling

- Use PH distributions to model delays, response-times, failure-times, etc. in test-beds, simulations, and abstract models
- Advantages over other distributions:
 - \blacksquare Flexibility \rightarrow Capture important system properties by fitting PH distributions to measurements
 - \blacksquare Generic representations \rightarrow Catch-all routines for random-variate generation
 - \blacksquare Markovian representations \rightarrow Suitable for analytical approaches
- Seldom used in simulation
 - little-known
 - difficult theory
 - little to no support in simulators
 - efficiency concerns

The Libphprng Library

- A library for generating random variates from PH distributions
- Part of the Butools collection http://webspn.hit.bme.hu/~butools
- Advantages:
 - easy to use
 - portable between simulators
 - fast

Libphprng features

- Shared library with small wrapper code for the uniform random number stream
- Application:
 - 1 Create BuToolsGenerator object for the distribution
 - 2 Register uniform random number stream
 - 3 Draw random variates
- For other simulators: Write your own wrapper

Efficiency concerns

- Random-variate generation by 'playing' the Markov chain
- Costs depend on the structure and the algorithm ... e.g. for a chain we do not need to randomly select the next state
- Structures are not unique
- Costs can be optimised by changing the structure
- Libphprng implements efficient algorithms and optimises the structure for random-variate generation

Evaluation

- Evaluation of quality and performance
- Quality: Evaluation of restart timeouts
- Different models:
 - cPSquare
 - Exponential distribution
 - Lognormal distribution
 - Phase-type distribution (50 phases)

Evaluation

- Evaluation of quality and performance
- Quality: Evaluation of restart timeouts
- Different models:
 - cPSquare
 - Exponential distribution
 - Lognormal distribution
 - Phase-type distribution (50 phases)
- Performance: Simple source/sink model

Evaluation: Quality

Evaluation: Quality

Evaluation: Quality

- Not all models capture the density well
- Comparison of results: Only the PH model shows the existence of an optimal timeout

Evaluation: Performance

Evaluation: Performance

Evaluation: Performance

- Libphprng is less efficient than the simpler models
- Libphprng is more efficient than ArrivalProcess by Kriege et al. (2011) ... but only supports PH

Conclusion

- Libphprng enables accurate and efficient modelling of distributions in simulations using PH distributions
- Libphprng is portable between simulators
- Available from

http://webspn.hit.bme.hu/~butools

fin.