

Multicast Simulation and Modeling in OMNeT++

1)

2)

3)

4)

Introduction Contribution Use-case Conclusion

Agenda

- Introduction & Motivation
- Multicast in OMNeT++
- Use-case example and its validation
- **Final Notes**

Our Research

•Formal verification and analysis of computer networks

- Reachability analysis
- Static analysis
- Simulation and modeling

Two goals

- Long-term: Variety of tools helping network administrator
- Short-term: Framework for multicast simulation

Selected resources

- ANTLR
- OMNeT++ with INET framework
- ANSA extension our dedicated software

Paper Outlines...

Multicast

Goal driven by our university needs

Introduction ANSATranslator

- Contribution Use-case Conclusion
- ANTLR grammar translator
- from running config to XML

ANSARouter

Enhanced compound model with multicast support
 ANSASwitch

General Multicast Architecture

Introduction

Contribution Use-case Conclusion

Proposed Modules

Routing (IPv4 and IPv6)

- □ RIP
- OSPFv2
- OSPFv3
- IGMP, MLD
- PIM

Switching

- VLANs
- RSTP
- MSTP
- I TRILL

Quality of Service

- Queues (PQ, WFQ, CF
- Dropping algorithms (RED, WRED)

OSPFRouter and ANSARouter

notificationBoard interfaceStateManagerdeviceConfigurator

Introduction

Contribution Use-case Conclusion

IGMPv2

Introduction Contribution Use-case

Conclusion

Comparable with RFC 2236

- Election of IGMP Querier
- Generating and processing of messages
- Finite state machine

Simplified message structure

```
enum IGMPType
    IGMP MEMBERSHIP QUERY = 0 \times 11;
    IGMP MEMBERSHIP REPORT V1 = 0 \times 12;
    IGMP MEMBERSHIP REPORT V2 = 0 \times 16;
    IGMP LEAVE GROUP = 0 \times 17;
};
   IGMP message class
packet IGMPMessage
    short type enum(IGMPType);
                         // 1/10 s (e.g. for 10 s = 100)
    short maxRespTime;
    IPAddress groupAddress;
};
```


Use-Case

MulticastNetwork

Introduction	
Contribution	(std::vector <igmpinterface>) MulticastNetwork.router1.networkLayer.igmp.igmplft (ptr0xb006f70)</igmpinterface>
Use-case	(std::vector <interfaceentry *="">) MulticastNetwork.router1.interfaceTable.idToInterface (ptr07D34430)</interfaceentry>
Conclusion	
	<pre>idToInterface (std::vector<interfaceentry *="">)</interfaceentry></pre>

host4

0

Different Scenarios Behavior

Signing on to the multicast group

 Membership General Query, Membership Report

Leaving the multicast group

Leave Group, Membership Specific Query

Timing out group membership

Membership Query...after 350 s

E 🛥 E 👘 👘
(std::vector <p14interfaceentry>) MulticastNetwork.router1.interfaceTable.idToInterface (ptr0xad337ef</p14interfaceentry>
Fields
AlnterfaceEntry>) Entry) LOOPBACK macAddr:n/a IP:{inet_addr:127.0.0.1/8} Out[0] MTU:1500 MULTICAST POINTTOPOINT macAddr:n/a IP:{inet_addr:172.0.0.11/32} Out[1] MTU:1500 MULTICAST POINTTOPOINT macAddr:n/a IP:{inet_addr:172.0.0.12/32} Out[2] MTU:1500 MULTICAST POINTTOPOINT macAddr:n/a IP:{inet_addr:172.0.0.13/32} Out[3] MTU:512000 MULTICAST POINTTOPOINT macAddr:n/a IP:{inet_addr:172.1.0.0/32}

Validation

Cisco 2621 with IOS12.24 and Ubuntu 10.10 hosts Same order of message exchange but different times

Conclusion

"First step towards multicast support!

^oFuture work

- Implementation of IGMPv3
- Create models for MLD in IPv6
- Dynamic multicast routing with PIM-DM

Problems

- Migration process
- Lack of backward compatibility in INET1.99.3

The End

Introduction Contribution Use-case Conclusion

Thank you very much for your attention!

Do you have any questions?