

Towards Massively Parallel Simulations of Massively Parallel High-Performance Computing Systems

Robert Birke, German Rodriguez, Cyriel Minkenberg IBM Research — Zurich

Outline

- High-performance computing: Road to exascale
- Role of the interconnection network
- Workload-centric simulation of HPC systems
 - Performance prediction of benchmarks & applications
 - Impact of communication subsystem on application performance: Cost-performance optimization
- Tool chain: Instrumentation, simulation, visualization
- Parallelization of our network simulator
- Porting Omnest & Venus to IBM Blue Gene
- Results
- Conclusions

Towards exascale computing

- Current #1 on Top 500: 10 Petaflop/s
- I Exaflop = 10¹⁸ floating point operations per second
- Timeframe: 2018

A few examples of current HPC systems

				Actual [www.top500.org]		Theoretical
	GFLOPS /core	Cores/chip GFLOPs/chip	Chips/rack Cores/rack TFLOPS/rack	#racks Cores/mach TFLOPS/mac	ine chine [peak]	Max. #racks Cores/machine TFLOPS/machine [peak]
Fujitsu K Computer	16	SPARC64 VIIIfx 8 128	102 816 13	RIKEN 12.7 MW	864 705'024 11'280	
Cray XT5-HE Jaguar	10.4	AMD Opteron 6 62.4	192 1'152 12	ORNL 7 MW	194 224'256 2'331	
IBM BG/L	2.7	PowerPC 440 2 5.5	1'024 2'048 5.6	LLNL 2.3 MW	104 212'992 596	128 262'144 717
IBM BG/P	3.4	PowerPC 450 4 13.6	1'024 4'096 13.9	Jülich 2.3 MW	72 294'912 1'003	256 1'048'576 3'558
IBM BG/Q Prototype	12.8	PowerPC A2 16 204.8	1'024 16'384 209.7	TJ Watson 39 kW	8 8'192 105	512 8'388'608 107'366
IBM p775 (PERCS)	31.2	POWER7 8 249.6	384 3'072 96	No top500 entry yet		170 524'288 16'320

Top 500 Interconnects

List of November 2011

Dominated by Ethernet and Infiniband

- Ethernet by volume
- Infiniband by FLOPS

Proprietary still plays a significant role

- Cray XT (Seastar) / XE (Gemini)
- IBM Blue Gene
- –IBM p775
- Myrinet, Quadrics

IO GigE: 14 installations

Ethernet Infiniband Custom / Proprietary

HPC interconnect trends

The latency-optimum switch radix is increasing

- Aggregate switch bandwidth for a given technology is fixed
- Should it be divided among many narrow or few wide ports?
 - Serialization latency vs. hop count
- As aggregate bandwidth increases, optimum switch radix also increases
- Large radix switches are indeed becoming available

Moving away from typical 2D/3D mesh and torus topologies

- Require low-radix switches
- Too many hops: large worst-case latency
- Low bisection bandwidth

Attractive topologies

- High-radix fat trees; "slim" trees
- "Concentrated" k-ary n-cubes
- High-dimensional k-ary n-cubes
- Dragonflies
- Network-assisted acceleration of collectives
- Very-high-end systems use tightly integrated custom networks
 - IBM BlueGene
 - IBM PERCS
 - Cray XE6 ("Baker")

12 z-ports

=======

56 ports

The interconnect – no longer 2nd class citizen?

Conventional wisdom

- Computation = expensive
- Communication = cheap
- Corollary: Processor is king

Then something happened...

- Computation
 - Transistors became "free" → more parallelism: superscalar, SMT, multi-core, many-core
 - Huge increase in FLOPS/chip
- Communication
 - Packaging & pins remained expensive
 - Scaling of per-pin bandwidth did not keep pace with CMOS density
- →Consequence
 - Comp/comm cost ratio has changed fundamentally
 - Memory and I/O bandwidth now an even scarcer resource

Source: Intel & ITRS

Consequences of scarce bandwidth

Performance of communication-intensive applications has scaled poorly

- because of lower *global* byte/FLOP ratio

Yet mean utilization is typically very low

- because of synchronous nature of many HPC codes; regularly alternating comp/comm phases
- massive underutilization for computation-intensive applications (e.g. LINPACK)
- Full-bisection bandwidth networks are no longer cost-effective
- Common practice of separate networks for clustering, storage, LAN has become inefficient and expensive
 - File I/O and IPC can't share bandwidth
 - I/O-dominated initialization phase could be much faster if it could exploit clustering bandwidth: poor speedup, or even slowdown with more tasks...

Interconnect becoming a significant cost factor

- Current interconnect cost percentage increases as cluster size increases
- About one quarter of cost due to interconnect for ~1 PFLOP/s peak system

	Fat Tree	Torus 1	Torus 2	Torus 3
Compute	63.3%	72.5%	76.5%	79.7%
Adapters + cable	10.4%	11.9%	12.6%	13.1%
Switches + cables	26.3%	15.6%	10.9%	7.2%
Total	100%	100%	100%	100%

Modeling of large-scale HPC systems

Dichotomy in performance evaluation in computer architecture

- Node architecture
 - Execution-driven, cycle-accurate CPU (ISA), cache and memory models
 - Highly accurate
 - Too much detail to scale to large node counts
- Network architecture
 - Highly accurate (flit level) at network level
 - Several orders of magnitude fewer network nodes than CPU cores
 - Network node much simpler than CPU core
 - But usually driven by either purely random or purely deterministic and nonreactive traffic patterns
- Need to adopt a holistic approach, taking into account application, node architecture, and network architecture
 - Given the scale of current and future systems, parallel simulation is the only way to manage simulation run time and memory footprint

Application-level performance prediction

- 1. Instrument applications to collect computation, communication and their inter-dependencies
 - For apps or benchmarks of interest
- 2. Collect traces on a production system
 - e.g., BG/P, MareNostrum
- 3. Perform full-system trace-driven simulations with Dimemas+Venus
 - Tune model parameters to match reality
 - Perform parameter sensitivity studies
 - Network technology
 - Network topology
 - Routing, etc...

4. Optimize

- Interconnect: e.g. performance/\$
- Application: e.g. communication scheduling

Simulation tool chain

Parallelizing our model

Obey the four commandments

- Thou shalt not use global variables
- Thou shalt not invoke thy neighbor's methods directly
- Thou shalt not use dynamic topologies
- Thou shalt provide sufficient lookahead

Message packing/unpacking

- Auto-generated by msgc in most cases
- Customized or hand-coded message classes require explicit implementation

Partitioning: Omnest fixes

- Partitioning compound modules: Proxy gates
- Lookahead between unconnected partitions
- Partition assignment in ini file: Compound module must be assigned union set of all partitions in which any of its submodules reside

MPI buffer size

- Need to assign large MPI buffer; appears to scale with square of #partitions
- We believe this can be optimized

Debugging parallel efficiency

- One major issue (see next slide)

- Option 1: Nonhomogenous partitions; load balancing issues
- Option 2: Better homogeneity, but statistics module is a bottleneck
- Option 3: Split statistics module into one per partition

Simulated topologies

	2D mesh	3D mesh	Fat tree	Hierarchical mesh
Arity	<i>k</i> = 64	<i>k</i> = 16	<i>k</i> = 8	$k_{1,2,3} = 16, 8, 8$
Degree	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 3
Bristling	p = 1	<i>p</i> = 1	<i>p</i> = 1	<i>p</i> = 4
#end nodes	4,096	4,096	4,096	4,096
#switches	4,096	4,096	4,096	1,024
#links	10,240	14,336	32,768	16,986
Switch radix	5	7	16	33
Diameter	126	45	6	3

Speedup results on 32-core SMP 768 GB RAM

Memory footprint

Porting for gcc as well IBM xlc

- -Overall, porting was fairly smooth
- -xlc generally pickier than gcc
- -Once Omnest was ported, model porting was straightforward

Mostly nitty-gritty details

- -Please refer to the paper
- -(or get in touch with us)

One nasty issue with xlc related C++ name mangling

- -Obscure, hard-to-debug crash
- —...with an almost trivial solution

Parallel efficiency on BG/P

3D mesh

Loading Ned	Setup Network	🛛 🗖 Prepare Run
□ Simulation	Calling finish	Other

3-layer hierarchical mesh

Relative runtime contributions (2)

OMNeT++ Workshop 2012

Memory footprint

□ 3D mesh ■ Fat tree □ Hierarchical mesh

Next steps

- Share required code changes with community
- Reduce per-partition memory footprint
 - Wasteful MPI buffer allocation?
 - Potential to improve parsim MPI implementation?

Deterministic parallel execution

- In theory, results should be independent of the number of partitions (for same traffic pattern)
- In practice, this is very hard to achieve

• This approach can currently only be applied in conjunction with Venus-internal traffic generators

- Stochastic traffic (random spatial and temporal pattern)
- Deterministic traffic (predetermined spatial and temporal pattern)
- Workload models (collectives, benchmarks, mini-apps, skeleton apps)

Trace replay part is still sequential!

- ...and so is the co-simulation interface
- For true scalability, trace replay needs to be parallel as well

Apply our optimization methodology to the Venus/Omnest simulator itself

Conclusions

- Communication subsystem is a critical component of peta- and exascale HPC systems
 - Performance-limiting factor for communication-heavy codes
 - Account for an increasingly significant fraction of system cost and power

Modeling and simulating such systems requires a PDES approach

- Workload-oriented approach is essential to achieve optimal cost/performance balance for specific uses
- Manage simulation times and memory footprint
- Omnest provides the right support
- Parallelization requires a certain coding discipline
- Successfully ported Omnest & Venus to the Blue Gene platform
- Reasonable parallel efficiency can be achieved without much tuning
 - Relative speedup of >25% with up to 256 partitions
 - Depends quite significantly on simulated topology (diameter)

Questions?

-110

11