Integration of LISP and LISP-MN in INET

Dominik Klein, Matthias Hartmann
(University of Wuerzburg, Germany)

Michael Höfling, Michael Menth
(University of Tuebingen, Germany)
Current naming and addressing architecture is facing scalability problems

- Overload of IP address semantics with identification & routing information

Possible solution
- Locator identifier split
- Example: Locator/ID Separation Protocol (LISP) by CISCO
Outline

- Introduction
 - Locator/identifier split

- LISP background
 - Basic LISP architecture
 - Overview of LISP extensions

- LISP simulation model
 - Implemented nodes and messages

- Evaluation
 - Detailed analysis of handover delay

- Summary and future work
Introduction – Locator/Identifier Split

Idea

- Address space divided into identifiers and routing locators
- Mapping system provides ID-to-Loc information
- Network layer entities, e.g. gateways, add source and destination Locs to outgoing packets after mapping lookup
Locator/ID Separation Protocol (LISP)

- Separates local naming and addressing from global routing
 - **EIDs**: locally routable and identifier on global scope
 - **RLOCs**: globally routable IP addresses of LISP gateways
 - LISP gateways add RLOCs to IP packets after mapping lookup
 - Mapping service provides EID-to-RLOC information

![Diagram of LISP traffic flow](image)

OH:

IH:

<table>
<thead>
<tr>
<th>Src:</th>
<th>Dest:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN EID 1</td>
<td>LISP gateway RLOC A</td>
</tr>
<tr>
<td>LISP gateway RLOC A</td>
<td>Internet</td>
</tr>
<tr>
<td>Internet</td>
<td>LISP gateway RLOC B</td>
</tr>
<tr>
<td>LISP gateway RLOC B</td>
<td>SN EID 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OH: RLOC A</th>
<th>RLOC B</th>
</tr>
</thead>
<tbody>
<tr>
<td>EID 1</td>
<td>EID 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IH: DATA</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>EID 1</td>
<td>EID 2</td>
</tr>
<tr>
<td>DATA</td>
<td>DATA</td>
</tr>
</tbody>
</table>

Integration of LISP and LISP-MN in INET
Dominik Klein
LISP Interworking: Outgoing Flow

- **Idea:** send LISP packets without outer header
- **Problem:** upstream provider drops packets due to uRPF
- **Solution:** tunnel packets to proxy ETR (PETR)

![Diagram of LISP interworking]

<table>
<thead>
<tr>
<th>OH:</th>
<th>EID 1</th>
<th>11.3.2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IH:</td>
<td>EID 1</td>
<td>11.3.2.5</td>
</tr>
<tr>
<td></td>
<td>DATA</td>
<td></td>
</tr>
</tbody>
</table>

Integration of LISP and LISP-MN in INET

Dominik Klein
LISP Interworking: Incoming Flow

- **Observation:** non-LISP nodes use EIDs as destination address
- **Problem:** EIDs are not globally routable

- **Solution:** proxy ITRs announces highly aggregated EID-prefix
LISP Mobile Node (MN)

- MN acts as whole LISP domain
 - Implements LISP gateway functionality
 - EID used for identification and not for forwarding anymore
 - Care-of-address used for forwarding within local domain
 - MN registers care-of-address as RLOC at mapping service

![Diagram of LISP Mobile Node](attachment:image.png)

OH:
- Source: RLOC B
- Destination: 17.87.7.2

IH:
- Source: EID 2
- Destination: EID 1

Data packet:
- Source: EID 2
- Destination: EID 1
NAT traversal router (NTR) acts as anchor and relay
- NTR collocated with PETR
- MN registers at an NTR
- NTR adds own RLOC to mapping service

Tunnel between MN and NTR used to bypass NAT
Motivation & Background

Motivation
- Test and evaluate improvements to mobile node
- Proof-of-concept for NAT traversal
- Check interoperability of LISP-MN and NAT traversal
- Study handover performance of LISP-MN

Implementation background
- Extends INET framework with LISP protocol functionality
- Based on design ideas of OpenLISP
- Implementation according to LISP working group drafts
- Several modifications
 - Integration of DHCP
 - Extension of wireless model \(\rightarrow\) multihoming support
 - Integration of basic NAT functionality
Overview

- **Modified IP module**
 - Anchor point for LISP modules

- **LISP routing module**
 - Adds and removes LISP header on data plane
 - Triggers signaling messages

- **Map resolver module**
 - UDP application
 - Control plane signaling

- **LISP mapping cache**
 - Stores used mappings

- **Inter-module communication**
 - Done via Notification Board
Implemented Messages

- Message types and message formats implemented according to LISP working group drafts
- LISP header added and removed by lisp routing module
- Signaling messages sent by map resolver module over UDP
 - Registration messages
 - Mapping messages (lookup, probing, …)

![Message Types Diagram]

- cMessage
- LISPMessage
- LISPHeader
 - Map-Register
 - Map-Notify
 - Map-Request
 - Map-Reply
 - Signaling
 - Data
Implemented LISP Nodes

Integration of LISP and LISP-MN in INET
Dominik Klein
LISP (Proxy) Router Module

- Performs LISP signaling (e.g. register, lookup, ...)
- Stores recently used mappings
- IP module as anchor point for LISP routing module
- Used for inter-module communication
- Adds/Removes LISP header
- Triggers LISP signaling
Implemented LISP Nodes
One DHCP client per interface

Same module as in LISP router
Mobile node behavior activated via flag
Keeps track of mobile EID
17 Integration of LISP and LISP-MN in INET

Dominik Klein

Implemented LISP Nodes
Integration of LISP and LISP-MN in INET
Dominik Klein

LISP Map Server

- Handles registration requests
- Handles mapping lookups

Database for mapping entries
Implemented LISP Nodes
NAT Traversal Router

Database for external IP:port of registered mobile nodes

Extended mapServer module with NTR specific functionality

NTR specific forwarding, e.g. (NAT tunneling, packet relay, …)

LISP routing module as NTR also acts as PETR

Database for mapping entries of registered mobile nodes

Handover Network NAT.NTR

mappingDatabase

notificationBoard

2 interfaces

interfaceTable

routertid: 192.168.0.6
3+0 routes

routingTable

networkLayer

udp

lisp

ntr

ntrCache

dcaching

Extended mapServer module with NTR specific functionality

Database for external IP:port of registered mobile nodes

NTR specific forwarding, e.g. (NAT tunneling, packet relay, …)

LISP routing module as NTR also acts as PETR

Database for external IP:port of registered mobile nodes

Extended mapServer module with NTR specific functionality

Database for external IP:port of registered mobile nodes

NTR specific forwarding, e.g. (NAT tunneling, packet relay, …)

LISP routing module as NTR also acts as PETR
Handover Scenario

Integration of LISP and LISP-MN in INET
Dominik Klein
Detailed Delay Analysis

- Beacon lost detection delay
- Scanning and association delay
- LISP signaling delay
- Total handover delay

Passive scanning with one channel and 300 ms maxChannelTime

Beacon considered lost after 350ms.

<table>
<thead>
<tr>
<th>Event</th>
<th>Delay (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LISP->NAT</td>
</tr>
<tr>
<td>2</td>
<td>NAT->nLISP</td>
</tr>
<tr>
<td>3</td>
<td>nLISP->LISP</td>
</tr>
<tr>
<td>4</td>
<td>LISP->nLISP</td>
</tr>
<tr>
<td>5</td>
<td>nLISP->NAT</td>
</tr>
<tr>
<td>6</td>
<td>NAT->LISP</td>
</tr>
</tbody>
</table>

- Beacon considered lost after 350ms.
- Registration: 300 ms
- Cache update: 100 ms
- Relaying via NTR: 100 ms

Integration of LISP and LISP-MN in INET

Dominik Klein
Summary

Implementation of LISP model in INET
- Based on OpenLISP design idea and working group drafts
- Basic LISP architecture with interworking and mapping interface
- LISP mobility architecture with own NAT traversal
- Handover delay study as working example

Future work
- Extension of existing framework with mapping system
- Update/upgrade implementation according to the newest drafts
- Update implementation to the newest INET version
- Own website with documentation, tutorial, paper, …
Thank You for Your Attention