

QS-XCAST: A QoS Aware XCAST Implementation

Elisha Abade, K. Kaji, N. Kawaguchi Nagoya University, Japan

Introduction

- Multipoint communication
 - One source to many receivers
 - Application areas
 - Protocols
 - Multiple unicast, Multicast,
- Multicast
 - IP Multicast
 - Application Layer Multicast (ALM)

Multipoint Communication

APPLICATION AREAS:

1. Videoconferencing

2. IP Television

- Can be simplified using Multicast technology
- Multicast: Bandwidth efficiency
- □Multicast deployment in global scope is challenging
- □XCAST was proposed

XCAST

- XCAST: (Specifications in RFC 5058)
 explicit multiunicast
 - List of destinations embedded in IP header
 - Routing unicast route tables
 - Not yet fully investigated

\mathbf{Source}	Destinations	Data
Node A	Dst1, Dst2,DstN	

Complementary to IP multicast model:

□IP multicast:

□Scales with the number of receivers

□XCAST:

Scales with the number of groups

■No per-session signaling and state information

XCAST

A – Sender. B,C,D,E - Receivers

Packet from A: Embeds ALL destinations Has a bitmap

Router Operations:

Table lookup for next-hops
Grouping of destinations
Packet replication
Updating of the bitmaps

□Forwarding of packet copies

Motivation

- Need to deploy XCAST6 in real-world.
 - Existing routers are not XCAST-aware
 - Using Testbeds: Scale can be limited by time and resources available.
 - No Significant research on XCAST QoS
 - Existing simulators do not have XCAST routing model
- XCAST Simulation models are needed:
 - XCAST header is already complex
 - Alternative way to make XCAST QoS aware
 - Differentiated Architecture provides an option.

OMNeT++

- Generic:
 - Modeling any system where the discrete event approach is suitable.
 - Communication networks, Queuing systems etc
- QoS using DiffServ Architecture:
 - Only basic Implementation exists in OMNeT++
- Enhancements:
 - Implement XCAST6
 - Extend Basic DiffServ
 - Integrate DiffServ with XCAST6

QoS Provisioning

- Using DiffServ Architecture (RFC 2474, 2475)
- A defined set of building blocks
 - A small bit-pattern in IP packets (IPv4,IPv6)
 - 6-bit DS field (DSCP)
 - Forwarding treatment (Per-Hop-Behavior)
 - Classification and QoS revolve around DSCP
 - Hierarchical organization of nodes
 - (Core routers, Edge routers, End hosts)
 - Concept of domains (DiffServ domains)
 - Packet Marking
 - Admission Control

DiffServ Architecture

- Per-Hop-Behavior
 - Expedited Forwarding (EF) RFC 2598,
 - Assured Forwarding- AF, RFC 2597.
 - (AFxy) x classes, y drop precedence
 - Default (Best Effort BE) RFC 2474

The INET Framework

Protocols:

□Behavior implemented in Simple modules

Defined in C++ code

□Both wired and wireless

Concept:

Modules

Messages

Communication:

■Message passing

Modules:

DProtocols

Data holders

DExtra Objects

XCAST Protocol: Application layer

□Transport layer

□Network layer

Application Layer: □Destination hosts

Network Layer:

- XCAST has significant impact here
- □Understanding packet structure
- Routing decisions to pass to routing protocols

Transport Layer:

ControlInfo

Destinations

□Bitmap and ports

• Network Layer Modules:

IPv6 Class:

□Invokes:

Routing decisions made hereNeighbor Discovery

Data delivery (to Transport)

□ Marked as Work In Progress

IPv6 Extension Header:

Incomplete (OMNeT++ 4.1):Only Class DeclarationsNeeded by XCAST6

• Network Layer Modules:

IPv6 Module:

Destination List container:
Bitmap container
Redefined *handleMessage()*New: *routeXcastPackets()*XCAST Statistics:
Dropped packets

Replications

IPv6ExtensionHeader:

Completed:

□Routing Extension header

□Introduced:

List of destinationsXCAST Bitmap

• Network Layer Modules:

	Ne	etwork Layer			
IPProtocolId IPv6 Protocol Modules				InterfaceTable	
IPv6 IPv6Datagram	IPv6ErrorHandling	IPv6Extension Headers	RoutingTable6	IPv6ControlInfo	

IPv6ControlInfo:

Currently support single address:For XCAST6 Support:

- List of destinations
- Bitmap container
- □Traffic class holder

IPv6Datagram:

Methods to handle:
 Routing Extension header
 Traffic Class
 New IPv6ControlInfo

• Network Layer Modules:

IPv6FlatNetworkConfigurator:

All host in same network
No support for subnets

□Our approach:

- ■NETCONF-style XML file for
- □IP addresses & Routing

RoutingTable6:

Added: NETCONF XML processingInitialization stage 3 invokes:

- DparseXMLConfigFileForStaticRoutes()
 - DaddDefaultRoute()
 - **□**addStaticRoute()

- Transport Layer
 - UDPControlInfo
 - Destination: ALL_XCAST_NODES ("ff0e::114")
 - UDPControlInfo and IPv6ControlInfo exchange information across
 protocol layers
- Application Layer
 - XCAST6 Model application
 - Based on UDPBasicAPP
 - Selects a group and sends data to ALL members
- Statistics Collection
 - Dropped packets
 - Propagation delay
 - Number of replications etc

XCAST-DiffServ Integration

- DiffServ QoS tasks:
 - Classification,
 - Marking and
 - Shaping
- XCASTQoSClassifier
 - Inherits from
 IQoSClassifier Base
 Class
 - Implements 14 PHBs
 - Works with DropTailQoSQueue

Simulation

MetricsThroughputAverage per hop delay

□IPTV network

□Hierarchically

Core routers- Provider network,

Edge routers – Connecting clients

□IPTV Plans (For pricing & QoS)

- □Platinum EF
- □Gold AF41
- □Sliver AF31
- ■Bronze AF21
- Delux AF11
- Economy BE

Performance Evaluation

Average Throughput

Performance Evaluation

• Average per-hop delay

Performance Evaluation

Multiple DiffServ Domain

Conclusion and Future Work

- This work:
 - Shows how to implement XCAST6 in OMNeT++
 - Shows XCAST6 QoS provisioning using DiffServ Architecture
 - Focuses on key classes of INET Framework
 - We hope it opens up XCAST QoS research.
 - Source code available in Sourceforge.
- Future Work:
 - To investigate Challenges in XCAST QoS provisioning using DiffServ Architecture.