A Multi-Channel IEEE 1609.4 and 802.11p EDCA Model for the Veins Framework

David Eckhoff and Christoph Sommer

Computer Networks and Communication Systems, FAU (University of Erlangen), Germany
Computer and Communication Systems, University of Innsbruck, Austria

OMNeT++ 2012, March, Desenzano, Italy
Veins - Vehicles in Network Simulation

Features up to now

- Realistic movement patterns [1,2,3]
 - Crowd-Sourced Geo-data
 - Validated city-scale mobility by using SUMO [3]
 - Bidirectionally coupled simulation [1]

- Representation of the physical layer
 - Detailed interference computation

- Mac Layer?
 - 802.11b MiXiM models

1609.4, EDCA, 802.11p
Veins - Vehicles in Network Simulation

New! Full-Featured IEEE 1609.4 and IEEE 802.11p Mac Layer

Features

- The whole package (It makes a difference! [5])
- Detailed representation of the standard
 - Correct Timings and Parameter values
- Full EDCA functionality
- 1609.4 Channel Switching
- Computationally efficient
- 802.11p validated Bit Error Models [6]
- Full representation of the PHY packet format with all timings
- Open Source, available in Veins2.0rc2 at http://veins.car2x.org/

Veins - Vehicles in Network Simulation

What can I do with it?

- Simulation of multi-channel applications
- Safety application evaluation regarding 1609.4 latencies
- Protocol simulation with
 - Realistic throughput
 - Validated path loss models
- Play around and have fun with it
A Multi-Channel IEEE 1609.4 and 802.11p EDCA Model for the Veins Framework

Thanks!

See you at my poster!

David Eckhoff and Christoph Sommer

Computer Networks and Communication Systems, FAU (University of Erlangen), Germany
Computer and Communication Systems, University of Innsbruck, Austria
OMNeT++ 2012, March, Desenzano, Italy