

6th International OMNeT++ Workshop

The CNI Open Source Satellite Simulator based on OMNeT++

Brian Niehöfer, Sebastian Subik and Christian Wietfeld

05.03.2013

Table of contents

- Basic Motivation
- Actual Satellite Simulator compared to OS³
- Simulation Architecture of OS³
- Performance Evaluation
 - Qualitative Satellite Position-Accuracy Estimation
 - Quantitative GPS Signal to Noise Measurements
- Use Case: Voice over Satellite
 - Implementation
 - Simulative/Experimental Result Comparison
- Conclusion

Basic Motivation

British Broadcasting Corporation, www.bbc.com/

Basic Motivation

- Actual status: ~2000 active satellites
 - Excl. ~19.000 pieces of debris (>5cm)
 - >30 civil fields of application with its own recommendations
 - Research
 - Navigation
 - Communication
 - Disaster Monitoring
 - Military
 - Geodetic
 - ...

- High costs for experimental measurements or even In-Orbit Validation Failures
- Demand of a accurate and adaptable tool chain for a simulationbased modeling and evaluation process

OS³ in comparison to existing satellite frameworks

Name	Comment
Galileo System Simulation Facility (GSSF)	 Mainly provides global coverage analysesfor Galileo Missing flexibility to analyse other satellite systems
Multiscale Satellite Simulation Environment (MSSE)	 Foundation of OS³ Mainly design for simulating Galileo or GPS formations Complex handling No protocolstacks included
Satellite Navigation Radio Channel Signal Simulator (SNACS)	 Open-Source Primally focussed on GNSS signal generation Not adaptable for other satellite aspects/scenarios
Open-Source extensible spacecraft simulation and modeling (Open-SESSAME)	 Open-Source Simulation of spacecraft dynamics No protocol stacks or additional functionalities

OS³ Simulation Architecture

OS³ Simulation Architecture

Run Simulation

Get Files

OS³ Simulation Architecture

File Edit Help				
Choose Satellites	Edit omnet.ini			
DMNeT Project Folder	/home/user/053/			
 Map 	exemplary LUTs (Cospas SARSAT			
⊖ Sky View	Lat 0	Lon	0	Alt O
imulation Time Limit	1.0	days	•	reset
Ipdate Interval	20.0	minutes	•	reset
ender Frequency	2.4	MHz	•	reset
atellite Tx Power	7.0	dBW		reset
asestation Tx Power	20.0	mW	•	reset
nin SNR	0.0	dBHz		reset
ssumed Rain	0.0	ml/(h·m²)		live data
Get Files			Run	Simulation

The CNI Open Source Satellite Simulator based on OMNeT++

Qualitative Satellite Position-Accuracy Estimation

- Comparison between OS³ and commercial high-end GPS receiver
 - u-blox evaluation kit 6T-EVK
 - Sky-View mode (Elevation/Azimuth visualization)
 - u-blox position and measurement-time/s within OS³ validation setups

Qualitative Satellite Position-Accuracy Estimation

- Comparison between OS³ and commercial high-end GPS receiver
 - u-blox evaluation kit 67-EVK
 - Sky-View mode (Elevation/Azimuth visualization)
 - u-blox position and measurement-time/s within OS³ validation setups

Qualitative Satellite Position-Accuracy Estimation

- Comparison between OS³ and commercial high-end GPS receiver
 - u-blox evaluation kit 6T-EVK
 - Sky-View mode (Elevation/Azimuth visualization)
 - u-blox position and measurement-time/s within OS³ validation setups

Quantitative GPS Signal to Noise Measurements

Comparison of simulative and experimental SNR Determination over time

- u-blox evaluation kit 6T-EVK (given antenna and gain setup)
- Include Multipath effects
- OS³ was not able to simulate multipath on its own, extension using raytracing already developed in *
- Separate measurements into 3 classes

* = B. Niehöfer, S. Lehnhausen, C. Wietfeld. "Combined Analysis of Local Ionospheric and Multipath Effects for Lane-Specific Positioning of Vehicles within Traffic Streams", 6th ESA Workshop on Satellite Navigation Technologies (NaviTech), Noordwijk, The Netherlands , Dec 2012.

Quantitative GPS Signal to Noise Measurements

Comparison of simulative and experimental SNR Determination over time

- u-blox evaluation kit 6T-EVK (given antenna and gain setup)
- Include Multipath effects
- OS³ was not able to simulate multipath on its own, extension using raytracing already developed in *
- Separate measurements into 3 classes

* = B. Niehöfer, S. Lehnhausen, C. Wietfeld. "Combined Analysis of Local Ionospheric and Multipath Effects for Lane-Specific Positioning of Vehicles within Traffic Streams", 6th ESA Workshop on Satellite Navigation Technologies (NaviTech), Noordwijk, The Netherlands , Dec 2012.

Use Case: Voice over Satellite - Implementation

- Exemplary implementation using OMNeT+
 +
- Demonstrate OS³'s:
 - Flexibility
 - Performance
 - Benefit of included features
- Already gained measurements as further validation step
- Scenario assumes:
 - Terrestrial networks damages / no core network available
 - Independent cell using satellite link for wide area transmission

Use Case: Voice over Satellite - Implementation

- Exemplary implementation using OMNeT+
 +
- Demonstrate OS³'s:
 - Flexibility
 - Performance
 - Benefit of included features
- Already gained measurements as further validation step

- Scenario assumes:
 - Terrestrial networks damages / no core network available
 - Independent cell using satellite link for wide area transmission
 - Generation and processing of voice packets within independent OMNeT++ simulation
 - Coupled with OS³ for time-depending SNR estimation
 - Based on SNR → Calculate Packet Error Rate

Use Case: Voice over Satellite - Results

Use Case: Voice over Satellite - Results

The CNI Open Source Satellite Simulator based on OMNeT++

The CNI Open Source Satellite Simulator based on OMNeT++

Objective

- Providing Open-Source Satellite Simulator, supporting:
 - Various existing and future satellite systems
 - Individual extensions and an Integration within OMNeT++
 - Easy Handling, even for non-expert user (OS³ GUI)

• OS³ Features:

- NORAD SGP4/SDP4 implementation
- Webservices for realistic and up to date input data (Weather, Satellite movement, Altitude,..)
- Calculation of various channel characteristics
- Configuration of scenario-specific parameters
- Two different visualization methods
- Plattform independent
- ...

OS³ Validation and Use Case

- OS³ data compared with data from German Aerospace Center (DLR), High-End GPS measurement equipment and own Voice over Satellit experiments
- All tests confirm accuracy and validity of OS³ independent from each other

OS³ already available for download: www.cni.tu-dortmund.de/os3

Thank you for your attention

Any questions?

Dipl.-Ing. Brian Niehöfer Communication Networks Institute TU Dortmund University Germany