

Simulation of Adversarial Scenarios in OMNeT++

Putting Adversarial Queueing Theory from Its Head to Feet

Daniel Berger, Martin Karsten, and Jens Schmitt

OMNeT++ Workshop 2013 in Cannes, French Riviera March 5th, 2013

Introduction

1 Introduction

- 2 Adversarial Queueing
- 3 Simulation Results
- 4 Challenges and Future Work

Overview

Adversarial Queueing Theory (AQT) studies hypothetical worst-case queueing scenarios.

- What we did
- Why simulation
- Results

- $\rightarrow\,$ simulation of AQT scenarios
- $\rightarrow\,$ study, new insights, and communicate
- $\rightarrow\,$ e.g. on bound tightness, robustness

Goal of this talk

- **1** raise interest for AQT in the simulation community
- 2 establish simulation as complementary method to analysis

Scenario

■ imagine a network with the following requirement: guaranteed delay ≤ 20ms

- worst-case delay? \Rightarrow two steps:
 - **1** determine: is a delay guarantee possible
 - **2** if yes: find tight bound (employ network calculus/...)

rough definition

a network is stable \Leftrightarrow a finite bound on delay exists

dirco h Daniel Berger, Martin Karsten, and Jens Schmitt – Simulation of Adversarial Scenarios in OMNeT++ S. 3/18

Scenario

■ imagine a network with the following requirement: guaranteed delay ≤ 20ms

- worst-case delay? \Rightarrow two steps:
 - **1** determine: is a delay guarantee possible
 - **2** if yes: find tight bound (employ network calculus/...)

rough definition

a network is stable \Leftrightarrow a finite bound on delay exists

dirco h Daniel Berger, Martin Karsten, and Jens Schmitt – Simulation of Adversarial Scenarios in OMNeT++ S. 3/18

Contribution

- framework to capture adversarial traffic description
 in short: packet trajectories, and adversarial strategies
- implementation of some classical AQT scenarios
- interpretation of some of the results
 - modeling assumptions, bound tightness, parameter interaction

An open simulator for the Adversarial Queueing framework http://disco.informatik.uni-kl.de/content/Aqtmodel

Adversarial Queueing

1 Introduction

2 Adversarial Queueing

- 3 Simulation Results
- 4 Challenges and Future Work

Network Instability

network instability is based on inductive constructions
 recall: mentioned cyclic graphs

hypothetical adversary (cf. online algorithms)

can inject anywhere and can choose packet trajectory

- adversary's goal: maximize stress on network
- injections are subject to a leaky-bucket constraint (e.g.): for any edge: sum of injections in [t₁, t₂] ≤ r(t₂ - t₁) + b
- r < edge capacity</pre>
- \Rightarrow e.g. this topology is stable:

1. assume a set of red packets queued at e_1

1. assume a set of red packets queued at e_1 2. inject blue packets into e_1 with path (e_1, e_2, e_4)

3.b inject packets into e_2 \Rightarrow slow down blue packets

1. assume a set of red packets queued at e_1 2. inject blue packets into e_1 with path (e_1, e_2, e_4) 3.a inject green packets into e_1 with path (e_1, e_3, e_4) .

3.b inject packets into e₂

2. inject blue packets into e_1 with path (e_1, e_2, e_4) 3.a inject green packets into e_1 with path (e_1, e_3, e_4) .

Effect of Adversarial Injections

- queue of *e*⁴ (and others) experiences repeated bursts
- burst size grows without bound over time
- no upper bound on queue length or delay

Open Questions

in general:

- how real is the threat?
- so what does it mean?

more specific:

- how long does it take to induce some particular delay?
- countermeasures?
- how realistic are modeling assumptions?
 - perfect time synchronization
 - infinite buffers
 - errors in discretization, rough calculations, bounds, ...
- assumption of initial network state (so-called initial sets)

Simulation Results

1 Introduction

- 2 Adversarial Queueing
- 3 Simulation Results
- 4 Challenges and Future Work

Simulation Results

Case study with four examples

- Baseball (BB), due to Andrews et al., 2001
- Diaz et al., 2001
- graph minor \mathcal{A}^+ , due to Weinard, 2006
- gadget chains, Lotker et al., 2004

Disclaimer

Only exemplary study - may not be universally valid.

yet, we consider the selection of scenarios representative

Analytical Prediction vs. Simulative Result

Bound Tightness

Gadget Chains, Lotker et al.

Rerandomization

adversary relies on strictly deterministic synchronization

- events take place on distinct nodes with exact timing
- no noise: fixed channel capacity
- we introduce "rerandomization"
 - channel with variable delay
 - every traversal delay is sampled from a Normal distribution
- channel mean delay = deterministic delay
- delay standard deviation e.g. of 5% or 30%

Rerandomization

Challenges and Future Work

1 Introduction

- 2 Adversarial Queueing
- 3 Simulation Results
- 4 Challenges and Future Work

Challenges and Future Work

- high number of nodes, events
- long execution time
- simplifying abstraction, modeling error

- \rightarrow approximation
- \rightarrow parallelism
- \rightarrow step-wise convergence towards realism
- classical challenges in simulation
- we have great interest to learn from simulation community
- future work
 - utilize as part of our own theoretic work in AQT
 - develop towards more realistic scenarios
 - e.g. assess the role of cross traffic in the adversary's operation
 - enhance visualization

Simulation of Adversarial Scenarios in OMNeT++

Putting Adversarial Queueing Theory from Its Head to Feet

Daniel Berger, Martin Karsten, and Jens Schmitt

Slides will be available:

http://disco.informatik.uni-kl.de/software/AQTmodel/SlidesOMNeT2013.pdf

Rerandomization Detailed Operation

Interaction of Initial Sets with Injection Rate

