
CHAIR FOR SOFTWARE DESIGN AND QUALITY

The OMPCM Simulator for Model-Based Software
Performance Prediction
A Model-Driven Approach for Combining Network and Software Architecture Simulation

Jörg Henß, Philipp Merkle and Ralf H. Reussner | March 5, 2013

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

www.kit.edu

http://www.kit.edu


Motivation: Palladio Component Model

Palladio Component Model (PCM)
Component-based software architecture
Captures performance-relevant behaviour
Prediction of performance and reliability

Tool Support
Eclipse-based UI: Palladio-Bench
Simulators and analytical solvers

www.palladio-simulator.com

Problem: Only trivial simulation for network communication
→ Use existing network simulation

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 2/7



Motivation: Palladio Component Model

Palladio Component Model (PCM)
Component-based software architecture
Captures performance-relevant behaviour
Prediction of performance and reliability

Tool Support
Eclipse-based UI: Palladio-Bench
Simulators and analytical solvers

www.palladio-simulator.com

Problem: Only trivial simulation for network communication
→ Use existing network simulation

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 2/7



Model-driven Process

Palladio-Bench

PCM Model

Create PCM Model

Model-to-Model

Transformation

Model-to-Text

Transformation

NED Model 

(XMI)

OMNeT++

NED File

Run Simulation

(opprun)

Results

Analyse Results

Integrates OMNeT++ with the PCM
Model-driven approach

SimCore intermediate model
Model transformations

Integrated seamlessly
No manual editing required
Launch OMPCM from
Palladio-Bench
Import simulation results

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 3/7



Model-driven approach

SimCore Model
Simplistic intermediate model

Comprises reduced set of operations
Remove redundancies
Complex operations are composed

Simplifies simulation development

Model-to-Model Transformation (QVT-O)
Converts Palladio to SimCore

Creates NED compatible model

Model-to-Text Transformation (Xtext)
Creates a textual NED File

Derived from adapted NED grammar

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 4/7



Model-driven approach

SimCore Model
Simplistic intermediate model

Comprises reduced set of operations
Remove redundancies
Complex operations are composed

Simplifies simulation development

Model-to-Model Transformation (QVT-O)
Converts Palladio to SimCore

Creates NED compatible model

Model-to-Text Transformation (Xtext)
Creates a textual NED File

Derived from adapted NED grammar

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 4/7



Model-driven approach

SimCore Model
Simplistic intermediate model

Comprises reduced set of operations
Remove redundancies
Complex operations are composed

Simplifies simulation development

Model-to-Model Transformation (QVT-O)
Converts Palladio to SimCore

Creates NED compatible model

Model-to-Text Transformation (Xtext)
Creates a textual NED File

Derived from adapted NED grammar

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 4/7



Implementation

OMPCM SimCore

StoEx-C OMNeT++

INET

OMPCM Net

OMPCM

Variables
ExtQueueing

Modular Structure
OMPCM SimCore: Provides control-flow elements, message position
denotes current instruction

OMPCM Net: Bridges between SimCore and INET, provides
component proxies

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 5/7



Validation

Based on comparison to reference simulator

Uses MediaStore case-study
Single user and multi user scenarios
Response time & resource utilisation

→ OMPCM yields consistent Results

Simulation up to 20% faster

Differences due to different PRNGs

Influence of Network:
Scenarios are sensitive to network
Simulation takes ∼10 times longer

0.00

0.02

0.04

0.06

0.08

0 5 10 15 20
Response Time (Seconds)

Pr
ob

ab
ilit

y 
D

en
si

ty

OMPCM

SimuCom

0.0

0.2

0.4

0.6

0 1 2 3
Response Time (Seconds)

Pr
ob

ab
ilit

y 
D

en
si

ty

OMPCM

SimuCom

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 6/7



Conclusion and Future Work

Contributions
Software architecture performance simulator based on OMNeT++

Detailed simulation of network influences
Usable for load generation on existing network models

Model-driven process
Uses model transformations
Enables seamless integration
Can be applied to other domains

Future Work
Further studies on impact of network influences

Integration of the OverSim network implementation

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 7/7



Experiments

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 8/7



First results - 10 vs. 100Mbps vs 1Gbps

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 9/7



First results(3)

Scenario Mean Stddev Variance
10Mbps 209.099 168.4204 28365.4144
100Mbps 21.0884 16.1496 260.809
1Gbps 9.7218 4.3588 18.8867

Table : MediaStore response times

Motivation Overview Transformations Implementation Validation Conclusions

Jörg Henß, Philipp Merkle and Ralf H. Reussner – OMPCM March 5, 2013 10/7


	Motivation
	Overview
	Transformations
	Implementation
	Validation
	Conclusions

