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Motivation: Palladio Component Model

Palladio Component Model (PCM)
Component-based software architecture
Captures performance-relevant behaviour
Prediction of performance and reliability

Tool Support
Eclipse-based UI: Palladio-Bench
Simulators and analytical solvers

www.palladio-simulator.com

Problem: Only trivial simulation for network communication
→ Use existing network simulation
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Model-driven Process

Palladio-Bench

PCM Model

Create PCM Model

Model-to-Model

Transformation

Model-to-Text

Transformation

NED Model 

(XMI)

OMNeT++

NED File

Run Simulation

(opprun)

Results

Analyse Results

Integrates OMNeT++ with the PCM
Model-driven approach

SimCore intermediate model
Model transformations

Integrated seamlessly
No manual editing required
Launch OMPCM from
Palladio-Bench
Import simulation results
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Model-driven approach

SimCore Model
Simplistic intermediate model

Comprises reduced set of operations
Remove redundancies
Complex operations are composed

Simplifies simulation development

Model-to-Model Transformation (QVT-O)
Converts Palladio to SimCore

Creates NED compatible model

Model-to-Text Transformation (Xtext)
Creates a textual NED File

Derived from adapted NED grammar
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Implementation

OMPCM SimCore

StoEx-C OMNeT++

INET

OMPCM Net

OMPCM

Variables
ExtQueueing

Modular Structure
OMPCM SimCore: Provides control-flow elements, message position
denotes current instruction

OMPCM Net: Bridges between SimCore and INET, provides
component proxies
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Validation

Based on comparison to reference simulator

Uses MediaStore case-study
Single user and multi user scenarios
Response time & resource utilisation

→ OMPCM yields consistent Results

Simulation up to 20% faster

Differences due to different PRNGs

Influence of Network:
Scenarios are sensitive to network
Simulation takes ∼10 times longer
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Conclusion and Future Work

Contributions
Software architecture performance simulator based on OMNeT++

Detailed simulation of network influences
Usable for load generation on existing network models

Model-driven process
Uses model transformations
Enables seamless integration
Can be applied to other domains

Future Work
Further studies on impact of network influences

Integration of the OverSim network implementation
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Experiments
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First results - 10 vs. 100Mbps vs 1Gbps
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First results(3)

Scenario Mean Stddev Variance
10Mbps 209.099 168.4204 28365.4144
100Mbps 21.0884 16.1496 260.809
1Gbps 9.7218 4.3588 18.8867

Table : MediaStore response times
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