
μIP Support for the

Network Simulation Cradle

Michael Kirsche and Roman Kremmer
Computer Networks Communication Systems Group
Brandenburg University of Technology, Germany

2nd OMNeT++ Community Summit 2015

1

Excerpt of Available TCP/IP Stacks

2

micro IP (μIP) vs. lightweight IP (lwIP) vs. FreeBSD IP-Stack

○ 8-bit and 16-bit µC ○ Embedded hardware ○ 32-/64-bit systems

○ ~4KB RAM / ~10KB ROM ○ ~20KB RAM / ~40KB ROM ○ KB  MBs RAM / ROM

○ Compliant with TCP, UDP
 and IP RFCs

+ Full-scale stack with DNS,
 PPP, ARP, DHCP, …

+ Full-scale stack with DNS,
 PPP, ARP, DHCP, …

+ Standalone version as well
 as Contiki integration

+ Standalone as well as OS
 support (multiple systems)

○ Embedded in FreeBSD

+ IPv6-ready (μIPv6) – Experimental IPv6 support + Full IPv6 support

– Uses only 1 packet buffer,
  throughput problems
  AppLayer retransmission

+ High performance in
 almost all use cases

+ Highest performance in
 all use cases

– Standalone version does
 not support socket API

+ Socket as well as raw /
 native API for performance

– Requires Linux OS,
 no standalone support

Excerpt of Available TCP/IP Stacks

3

micro IP (μIP) vs. lightweight IP (lwIP) vs. FreeBSD IP-Stack

○ 8-bit and 16-bit µC ○ Embedded hardware ○ 32-/64-bit systems

○ ~4KB RAM / ~10KB ROM ○ ~20KB RAM / ~40KB ROM ○ KB  MBs RAM / ROM

○ Compliant with TCP, UDP
 and IP RFCs

+ Full-scale stack with DNS,
 PPP, ARP, DHCP, …

+ Full-scale stack with DNS,
 PPP, ARP, DHCP, …

+ Standalone version as well
 as Contiki integration

+ Standalone as well as OS
 support (multiple systems)

○ Embedded in FreeBSD

+ IPv6-ready (μIPv6) – Experimental IPv6 support + Full IPv6 support

– Uses only 1 packet buffer,
  throughput problems
  AppLayer retransmission

+ High performance in
 almost all use cases

+ Highest performance in
 all use cases

– Standalone version does
 not support socket API

+ Socket as well as raw /
 native API for performance

– Requires Linux OS,
 no standalone support

Why microIP ?

4

MAC & PHY

(e.g., IEEE 802.15.4-2006)

UDP TCP

Data Link &
Physical Layer

Network
Layer

Transport
Layer

Application
Layer

Sensor Node‘s Stack

CoAP MQTT uXMPP

ICMPv6uIPv6

6LoWPAN

ND

Routing ND

...

MAC & PHY

(e.g., IEEE 802.3 / 802.11)

UDP TCP

End-System’s Stack

CoAP MQTT XMPP

ICMPv6IPv6

NDRouting

MAC & PHY

(e.g., IEEE 802.15.4)

MAC & PHY

(e.g., IEEE 802.3)

ICMPv6IPv6

NDRouting
ICMPv6uIPv6

NDRouting

6LoWPANND

Gateway‘s Stack

.

...

Part of a cyber physical system

Why simulate μIP in OMNeT++ ?

• microIP is usually tested via:

1. Live experimentation on real systems

• Deployments hard to control, low repeatability, costs, …

2. Testbeds

• Low scalability, set-up inflexible, limited control of external factors, …

3. Cooja (Contiki OS simulator)

• Cycle accurate emulation and possible interconnection to real systems

• Limited simulation and comparison of/with systems/models outside the Contik world

5

 Tackle these issues (+ more) through generic OMNeT++ simulation

What is the Network Simulation Cradle ?

• Developed by Sam Jansen

• Basic idea: Integrate kernel-space implementations of real world network

stacks into ns-2 / OMNeT++ (instead of failure prone / abstract modeling)

• Basic approach:

• Parse the C-code,

• Substitute global variables through arrays of per-node-instance variables,

• Recompile as a shared library,

• Map interfaces to ns-2 / OMNeT++ through glue code.

• Works without manual code changes in contrast to “plain” porting of stacks

• E.g.: Bless and Doll “Integration of the FreeBSD TCP/IP-Stack into the Discrete

Event Simulator OMNet++”

6

How to integrate μIP into the NSC ?

• Process differs a bit for different

microIP versions (w/o API)

1. Integrate μIP source code into

NSC build process

2. Implement stubs for references to
unused system functions

3. Adjust globalizer parser for μIP

4. Create new netstack drivers for
Contiki (to redirect calls to NSC)

5. Create config files and integrate

into an OMNeT++ simulation

OMNeT++ Simulator

Simple Module for NSC

(TCP_NSC like ITCP)

uIP Shared Library
(libuip.so / libuipv6.so)

uIP Stack
(incl. netstack components with NSC support)

In
te

rf
a

c
e

Simulator (OMNeT++) interface and

support code (sim_support.cpp)

… send listen connect close abort …

… connect send listen …

7

How to use μIP in OMNeT++ ?

• Prerequisite:

• 32-bit Linux  NSC requirement

• Source code from Github

• Steps:

• Copy our code into extracted NSC

• Compile shared μIP library

(libuip.so / libuipv6.so)

• Adjust LD_LIBRARY_PATH

• Enable NSC / recompile simulation

• Setup omnetpp.ini

8

In Conclusion

• μIP support in OMNeT++:

• Provided via the NSC

• Currently support for IPv4

• Packet exchange between

different stacks possible

 Another stop along the road of

IoT simulations with OMNeT++

• Further actions:

• Full IPv6 integration

(NSC officially has IPv6 support,

function calls yet always go to v4)

• Combine with IEEE 802.15.4,

6LoWPAN and applayer protocol

 Possible integration of other

stacks in the future (e.g., RiotOS)

9

