Technische Hochschule -I-)'
Ingolstadt

Research Centre

Regain Control of Growing Dependencies
in OMNeT++ Simulations

Raphael Riebl - 3. September 2015

What can you expect?

a Status quo of OMNeT++ build process
& Why it can become insufficient

@ Some basics about CMake

@ How to combine OMNeT++ and CMake

2 - Raphael Riebl - 3. September 2015

3

Current build process for OMNeT++ projects

$(OMNETPP_ROOT)/Makefile.inc

=
.includes
generates - creates
opp_makemake [+ T e B LR
Makefile

Invocation
a From IDE, see configuration stored in .oppbuildspec
@ From custom Makefile or build script

3 - Raphael Riebl - 3. September 2015

3

project binary

opp_makemake usage from IDE

type filter text

Makemake Gy Doy -
© Resource On this page you can configure source folders and makefile generation; these two are independent of each other. All
Builders changes apply to all configurations.
@ C/C++ Build + oy aloha: makemake (deep. recurse) —> aloha (executable) Build
Build Variables

; © Makemake
Environmet Makemake Options
ptions.

Logging

Settings
Tool Chain
© C/C++ Gener:
© Code Anal
Documenta
File Types
Formatter

Indexer
Language
Paths and
Preprocessg
Profiling Cal
Linux Tools Paf
@ OMNeT++
Documenta
NED Sourc
Project Feal
Project Referef
Refactoring H
Run/Debug 58

Makemake Options
Makefile generation (Makemake) options for /aloha.

Target | Scope | Compile | Link | Custom | Preview

Target type:
@ Executable

() shared library (.dll. .so or .dylib)
() static library (.lib or .a)

Export this shared|static library fi

other p

) No executable or library

NOTE: To prevent the makefile from compiling any source file, exclude this folder from build.
Target name:

© Default: aloha

) specify name (without extension/lib prefix): |aloha

Output:

Output directory: [out

@ [cancal [ok

J

() Custom Makefile
) No Makefile

Source

© Source Location

N

Defaults| [Apply |

phael Riebl - 3. September 2015

Cancel OK

Inconvenient for complex setups
Example: Artery dependencies

3

o

P Fork at github: https://github.com/riebl/artery

5 - Raphael Riebl - 3. September 2015

https://github.com/riebl/artery

Inconvenient for complex setups
Example: Artery dependencies

3

find_package

find_package (exported)

(custom)
@u LJ e
T 'O.MNeT++ legacy find package find_package
. (built-in) (custom)
A

creT tegney [*] m

P Fork at github: https://github.com/riebl/artery

5 - Raphael Riebl - 3. September 2015

https://github.com/riebl/artery

Why CMake?

m CMake is widely used for C/C++ projects

m Convenient user-interface for configuring builds (ccmake, cmake-gui)
a Working dependency handling

m internal: correct build order within project
u external: library and include directory locations (find_package)

@ More accessible syntax compared to Makefiles
® Previous experience available ©

6 - Raphael Riebl - 3. September 2015

3

CMake fundamentals

A CMake project consists of at least one CMakelLists.txt

m Defines executables and libraries to build
m Defines dependencies between these build targets and other libraries

7 - Raphael Riebl - 3. September 2015

3

CMake fundamentals

A CMake project consists of at least one CMakelLists.txt

m Defines executables and libraries to build
m Defines dependencies between these build targets and other libraries

Building a CMake project spans three phases

1 Configuring a build directory (with local CMake cache)
Set custom compiler flags, determine location of external dependencies,
select build type...

2 Generating files for a native build tool based on previous configuration
GNU Makefiles, Ninja, Eclipse or Visual Studio projects etc.

3 Building with actual native build tool

7 - Raphael Riebl - 3. September 2015

3

Steps towards OMNeT++/CMake

1 Enhance find_package for OMNeT++
u Directory with include headers
u Import OMNeT++ libraries (debug and release)
m Extract compiler flags from Makefile.inc
u OMNeT++ message compiler

8 - Raphael Riebl - 3. September 2015

3

Steps towards OMNeT++/CMake

1 Enhance find_package for OMNeT++
u Directory with include headers
u Import OMNeT++ libraries (debug and release)
m Extract compiler flags from Makefile.inc
u OMNeT++ message compiler
2 Enable integration of existing OMNeT++ projects
u Avoid making changes in foreign projects
m Generic solution applicable to various projects is preferable
m Should be easy to use

8 - Raphael Riebl - 3. September 2015

3

Steps towards OMNeT++/CMake

1 Enhance find_package for OMNeT++

u Directory with include headers

u Import OMNeT++ libraries (debug and release)
m Extract compiler flags from Makefile.inc

u OMNeT++ message compiler

2 Enable integration of existing OMNeT++ projects
u Avoid making changes in foreign projects
m Generic solution applicable to various projects is preferable
m Should be easy to use

3 Support OMNeT++ specific features, i.e. NED folders

m Additional CMake target property NED_FOLDERS
m Targets inherit all NED folders of their dependencies automatically
m Property value can be used for opp_run invocation

8 - Raphael Riebl - 3. September 2015

3

find_package(OmnetPP) 'I').

Implemented through FindOmnetPP.cmake located in CMake’s module path
Basically, OMNeT++ can be treated like any other C/C++ library

@ Additional location hint by looking up omnetpp binary in PATH
@ Extract information from Makefile.inc with regular expressions
a Dedicated libraries with debug symbols are available

9 - Raphael Riebl - 3. September 2015

Integrating OMNeT++ legacy projects -I-)'
Exploit Makefile generated by opp_makemake, e.g. inet/src/Makefile (INET 3.0)

OMNeT++/0OMNEST Makefile for LibINET

#

This file was generated with the command:

opp_makemake -f --deep ——make-so —o INET -0 out —pINET
--no-deep-includes -Xinet/applications/voipstream
-Xinet/linklayer/ext -Xinet/transportlayer/tcp_lwip
-Xinet/transportlayer/tcp_nsc -I../src -DWITH_TCP_COMMON
-DWITH_TCP_INET -DWITH_IPv4 -DWITH_ IPv6 -DWITH_xzMIPv6
-DWITH_GENERIC -DWITH_FLOOD -DWITH_UDP -DWITH_RTP -DWITH_SCTP
-DWITH_DHCP -DWITH_ETHERNET -DWITH_PPP -DWITH_MPLS -DWITH_OSPFv2
-DWITH_BGPv4 -DWITH_PIM -DWITH_RIP -DWITH_POWER -DWITH_RADIO
-DWITH_AODV -DWITH_MANET -DWITH_ IEEE80211 -DWITH_APSKRADIO
-DWITH_IDEALWIRELESS -DWITH_TUN -DWITH_BMAC -DWITH_LMAC
-DWITH_IEEE802154 -DWITH_CSMA

*rrrrroprr g ®

1 Parse opp_makemake line with a helper script opp_cmake
2 Create a CMake file with IMPORTED CMake targets of legacy project

Raphael Riebl - 3. September

Integrating OMNeT++ legacy projects

Overview of involved tools during build phases

Import legacy OMNeT++ dependency in CMake project

Legacy

opp_makemake

Makefil

e legacy binary

-

CMake generate

‘ea‘}(.’ 0

opp_cmake

S

legacy-targets.cmake

S
¢

CMake build

project binary

import_opp_target

compiling
& linking

1 - Raphael Riebl -

3. September 2015

3

An OMNeT++ example project using CMake

project(YourProject)
cmake_minimum_required(VERSION 3.0)
set (CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)

find_package (OmnetPP 4.6 REQUIRED)
definition of add_opp_run and importi_opp_target macros omitted

find_path(INET_DIR NAMES src/inet/package.ned DOC "INET root
— directory")
import_opp_target(inet ${INET_DIR}/src/Makefile)

set (SOURCES src/a.cc src/b.cc)

add_library(project_library SHARED ${SOURCES})
set_property(TARGET project_library PROPERTY NED_FOLDERS src)
target_link_libraries(project_library opp_interface inet)

add_opp_run(run_project omnetpp.ini project_library)

- Raphael Riebl - 3. September 2015

3

What's next? -I-)'

Presented CMake macros, scripts and example project are available at
https://github.com/riebl/artery/releases/tag/opp-summit2015

A Proof-of-Concept is working for Artery
£¥ Might it be valuable (reusable) for your simulation?
©» Feedback is welcome as are suggestions for improvement!

13 - Raphael Riebl - 3. September 2015

https://github.com/riebl/artery/releases/tag/opp-summit2015

