
Regain Control of Growing Dependencies
in OMNeT++ Simulations

Raphael Riebl · 3. September 2015

What can you expect?

Status quo of OMNeT++ build process

Why it can become insufficient

Some basics about CMake

How to combine OMNeT++ and CMake

2 · Raphael Riebl · 3. September 2015

Current build process for OMNeT++ projects

$(OMNETPP_ROOT)/Makefile.inc

opp_makemake

project binary
Makefile

generates

includes

creates

Invocation

From IDE, see configuration stored in .oppbuildspec

From custom Makefile or build script

3 · Raphael Riebl · 3. September 2015

opp_makemake usage from IDE

4 · Raphael Riebl · 3. September 2015

Inconvenient for complex setups
Example: Artery dependencies

GeographicLibBoost

Artery

VeinsOMNeT++

INET

Vanetza

 Fork at github: https://github.com/riebl/artery

5 · Raphael Riebl · 3. September 2015

https://github.com/riebl/artery

Inconvenient for complex setups
Example: Artery dependencies

GeographicLibBoost

Artery

VeinsOMNeT++

INET

Vanetza CMake

CMake

OMNeT++ legacy

OMNeT++ legacy

find_package
(custom)

find_package
(custom)

find_package
(built-in)

?
find_package

(exported)

 Fork at github: https://github.com/riebl/artery

5 · Raphael Riebl · 3. September 2015

https://github.com/riebl/artery

Why CMake?

CMake is widely used for C/C++ projects

Convenient user-interface for configuring builds (ccmake, cmake-gui)

Working dependency handling

internal: correct build order within project
external: library and include directory locations (find_package)

More accessible syntax compared to Makefiles

Previous experience available 

6 · Raphael Riebl · 3. September 2015

CMake fundamentals

A CMake project consists of at least one CMakeLists.txt

Defines executables and libraries to build

Defines dependencies between these build targets and other libraries

Building a CMake project spans three phases

1 Configuring a build directory (with local CMake cache)
Set custom compiler flags, determine location of external dependencies,
select build type…

2 Generating files for a native build tool based on previous configuration
GNU Makefiles, Ninja, Eclipse or Visual Studio projects etc.

3 Building with actual native build tool

7 · Raphael Riebl · 3. September 2015

CMake fundamentals

A CMake project consists of at least one CMakeLists.txt

Defines executables and libraries to build

Defines dependencies between these build targets and other libraries

Building a CMake project spans three phases

1 Configuring a build directory (with local CMake cache)
Set custom compiler flags, determine location of external dependencies,
select build type…

2 Generating files for a native build tool based on previous configuration
GNU Makefiles, Ninja, Eclipse or Visual Studio projects etc.

3 Building with actual native build tool

7 · Raphael Riebl · 3. September 2015

Steps towards OMNeT++/CMake

1 Enhance find_package for OMNeT++

Directory with include headers
Import OMNeT++ libraries (debug and release)
Extract compiler flags from Makefile.inc
OMNeT++ message compiler

2 Enable integration of existing OMNeT++ projects

Avoid making changes in foreign projects
Generic solution applicable to various projects is preferable
Should be easy to use

3 Support OMNeT++ specific features, i.e. NED folders

Additional CMake target property NED_FOLDERS
Targets inherit all NED folders of their dependencies automatically
Property value can be used for opp_run invocation

8 · Raphael Riebl · 3. September 2015

Steps towards OMNeT++/CMake

1 Enhance find_package for OMNeT++

Directory with include headers
Import OMNeT++ libraries (debug and release)
Extract compiler flags from Makefile.inc
OMNeT++ message compiler

2 Enable integration of existing OMNeT++ projects

Avoid making changes in foreign projects
Generic solution applicable to various projects is preferable
Should be easy to use

3 Support OMNeT++ specific features, i.e. NED folders

Additional CMake target property NED_FOLDERS
Targets inherit all NED folders of their dependencies automatically
Property value can be used for opp_run invocation

8 · Raphael Riebl · 3. September 2015

Steps towards OMNeT++/CMake

1 Enhance find_package for OMNeT++

Directory with include headers
Import OMNeT++ libraries (debug and release)
Extract compiler flags from Makefile.inc
OMNeT++ message compiler

2 Enable integration of existing OMNeT++ projects

Avoid making changes in foreign projects
Generic solution applicable to various projects is preferable
Should be easy to use

3 Support OMNeT++ specific features, i.e. NED folders

Additional CMake target property NED_FOLDERS
Targets inherit all NED folders of their dependencies automatically
Property value can be used for opp_run invocation

8 · Raphael Riebl · 3. September 2015

find_package(OmnetPP)

Implemented through FindOmnetPP.cmake located in CMake’s module path
Basically, OMNeT++ can be treated like any other C/C++ library

Additional location hint by looking up omnetpp binary in PATH

Extract information fromMakefile.inc with regular expressions

Dedicated libraries with debug symbols are available

9 · Raphael Riebl · 3. September 2015

Integrating OMNeT++ legacy projects
Exploit Makefile generated by opp_makemake, e.g. inet/src/Makefile (INET 3.0)

OMNeT++/OMNEST Makefile for libINET
#
This file was generated with the command:
opp_makemake -f --deep --make-so -o INET -O out -pINET

--no-deep-includes -Xinet/applications/voipstream
-Xinet/linklayer/ext -Xinet/transportlayer/tcp_lwip
-Xinet/transportlayer/tcp_nsc -I../src -DWITH_TCP_COMMON
-DWITH_TCP_INET -DWITH_IPv4 -DWITH_IPv6 -DWITH_xMIPv6
-DWITH_GENERIC -DWITH_FLOOD -DWITH_UDP -DWITH_RTP -DWITH_SCTP
-DWITH_DHCP -DWITH_ETHERNET -DWITH_PPP -DWITH_MPLS -DWITH_OSPFv2
-DWITH_BGPv4 -DWITH_PIM -DWITH_RIP -DWITH_POWER -DWITH_RADIO
-DWITH_AODV -DWITH_MANET -DWITH_IEEE80211 -DWITH_APSKRADIO
-DWITH_IDEALWIRELESS -DWITH_TUN -DWITH_BMAC -DWITH_LMAC
-DWITH_IEEE802154 -DWITH_CSMA

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

...

1 Parse opp_makemake line with a helper script opp_cmake

2 Create a CMake file with IMPORTED CMake targets of legacy project

10 · Raphael Riebl · 3. September 2015

Integrating OMNeT++ legacy projects
Overview of involved tools during build phases

Import legacy OMNeT++ dependency in CMake project
Le

g
a
cy

C
M

a
ke

 g
e
n
e
ra

te
C

M
a
ke

 b
u
ild

Makefile

opp_makemake

opp_cmake

legacy-targets.cmake

import_opp_target
compiling
& linking

legacy binary

project binary

reads

inclu
des lin

ks
 t
o

11 · Raphael Riebl · 3. September 2015

An OMNeT++ example project using CMake

project(YourProject)
cmake_minimum_required(VERSION 3.0)
set(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)

find_package(OmnetPP 4.6 REQUIRED)
definition of add_opp_run and import_opp_target macros omitted

find_path(INET_DIR NAMES src/inet/package.ned DOC "INET root
directory")↪→

import_opp_target(inet ${INET_DIR}/src/Makefile)

set(SOURCES src/a.cc src/b.cc)
add_library(project_library SHARED ${SOURCES})
set_property(TARGET project_library PROPERTY NED_FOLDERS src)
target_link_libraries(project_library opp_interface inet)

add_opp_run(run_project omnetpp.ini project_library)

12 · Raphael Riebl · 3. September 2015

What’s next?

Presented CMake macros, scripts and example project are available at
https://github.com/riebl/artery/releases/tag/opp-summit2015

 Proof-of-Concept is working for Artery
 Might it be valuable (reusable) for your simulation?
 Feedback is welcome as are suggestions for improvement!

13 · Raphael Riebl · 3. September 2015

https://github.com/riebl/artery/releases/tag/opp-summit2015

