
What’s New in OMNeT++

András Varga

Opensim Ltd

andras@omnetpp.org

2nd OMNeT++ Community Summit

September 4-5, 2015

IBM Research Labs, Zurich

1

PART 1
API CHANGES

2

New Logging Mechanism

More featureful API:
• log levels: fatal, error, warning, info, detail, debug, trace

– fatal, error, warning: should refer to events in the simulated system (not to technical
errors in the simulation program)

– info, detail: should refer to the domain (i.e. understood by anyone who knows the
protocol the model implements)

– debug, trace: specific to the implementation (i.e. understanding requires familiarity with
the source code)

• category support

– category identifies a topic; example categories: “retx”, “frag”, “mgmt”

3

EV_INFO << “Received BA acks all outstanding frames\n”; // same as EV << ...
EV_TRACE << “Returning from processBlockAck()\n”;

EV_WARNING << “Timeout, retransmitting frame\n”;
EV_ERROR << “Protocol violation: received ACK when CTS was expected\n”;

EV_DETAIL_C(“frag”) << “Fragment completes frame, sending up\n”;

New Logging Mechanism

Configurability:
• runtime loglevel threshold, compile-time loglevel threshold

• filtering by module and category

Implementation:
• tons of information is passed to the logging code with each line:

– file/line, loglevel/category, event number, simulation time, msg name and
type, module name and type, object name and type, etc.

• configurable log prefix (40+ “%x” format directives!)

4

Random Variate Generation

Introduced cRandom – random variable stream as object

• encapsulates an RNG (cRNG*) and parameters of the distribution

• numbers can be extracted with the draw() method

• subclasses: cUniform, cExponential, cNormal, etc.; also cStatistic!

Related change on random variate generation functions (normal(), etc.):

double normal(double mean, double stddev, int rngIndex=0);

↓ ↓ ↓

double normal(cRNG *rng, double mean, double stddev);

• Motivation: break the functions’ dependence on the context module

• Functions with the old signatures added to cComponent as methods, so
most models won’t notice the change

5

Event Class

Introduced cEvent as a base class of cMessage:

• cEvent allows scheduling of arbitrary code for a simulation time that runs
independent of modules.

6

class cEvent {
public:

virtual void execute() = 0;
...

};

Motivation:
• allow implementing simulation time limit with an "end-simulation"

event
• encapsulate foreign events (e.g. SystemC events) for seemless

integration with the simulation event loop
• NOT intended for use in simulation models

Scheduler Changes

cScheduler API has changed:

• Partly in relation to the cEvent change

• Removed:
– virtual cMessage *getNextEvent() = 0; // leaves event in FES

• Added:
– virtual cEvent *takeNextEvent() = 0; // removes event from FES

– virtual cEvent *guessNextEvent() = 0; // only for UI purposes

7

Replaceable FES

FES (Future Event Set):
Stores the events that are scheduled to occur but have not been
processed yet. send() variants and scheduleAt() add events to the
FES.

Abstract base class: cFutureEventSet
Default implementation: cEventHeap (ex-cMessageHeap)
• implements binary heap
Configuration option:
• futureeventset-class=<classname>

Motivation:
• Alternative data structures may be more efficient than heap for

specific workloads
• Examples: skiplist, various balanced trees, calendar queue

8

Simulation Lifecycle Listeners

Added simulation lifecycle listeners:

• Called back before and after network setup, on network initialization,
before and after network finalization, etc.

• Motivation: allow more flexibility when writing initialization and shutdown
code for schedulers, result file managers and other extensions

9

class cISimulationLifecycleListener {
virtual void lifecycleEvent(SimulationLifecycleEventType event, cObject *details) = 0;

};

Events:
(LF_)ON_STARTUP, PRE_NETWORK_SETUP, POST_NETWORK_SETUP, PRE_NETWORK_INITIALIZE,
POST_NETWORK_INITIALIZE, ON_SIMULATION_START, ON_SIMULATION_PAUSE,
ON_SIMULATION_RESUME, ON_SIMULATION_SUCCESS, ON_SIMULATION_ERROR,
PRE_NETWORK_FINISH, POST_NETWORK_FINISH, ON_RUN_END, PRE_NETWORK_DELETE,
POST_NETWORK_DELETE, ON_SHUTDOWN

Fingerprint Changes

Simulation fingerprint:
A hash computed from events of a simulation run. For regression testing,
one compares the fingerprint computed from a simulation run to a pre-
recorded fingerprint.

Introduced in OMNeT++ 4.0, fingerprints have since proven to be extremely
useful. We use them daily during INET development!

Changes to make fingerprints even more useful:
– use module path strings instead of module IDs (increases robustness)

– make it configurable what is taken as input for hash (message class
names, packet lengths, control info class names, etc.)

– backward compatibility (4.x) mode also exists

10

Canvas API

Allows adding extra graphical elements to the usual display string
based module graphics.

See last year’s presentation

11

API Cleanup

API cleanup
• omnetpp namespace (recommended: using namespace omnetpp;)

• iterator API change: use operator* instead of operator() for dereference

• removed deprecated functions, classes and other API elements

• removed 3.x compatibility features (WITH_DOUBLE_SIMTIME,
WITHOUT_CPACKET)

• images under images/old/ are no longer accessible without the old/
prefix

• ev and simulation macros have been removed

12

Codebase Cleanup

Cleanup and modernization of the codebase

• Modernizing: use nullptr and override; use <cstdio> instead of <stdio.h>, etc.

• Per-library namespaces (i.e. omnetpp::nedxml); fully qualified header guards;
qualified includes (i.e. #include "common/stringutil.h“ instead of #include
"stringutil.h”)

• Include folder: contains <omnetpp.h>, all other files are in the omnetpp/ subfolder

• Code style: renamed many identifiers (local variables, arguments, private data
members, etc.) to have consistent, camelCase names

C++11:

OMNeT++ 5.0 will compile with, but at least the base parts will not require C++11,
C++14 or newer C++ specs.

13

PART 2
AND MORE...

14

Demo

An example simulation

15

Tkenv is about to retire...

Qtenv:

A shiny new OMNeT++ graphical runtime
based on the Qt toolkit

Release plan:

• OMNeT++ 5.0:
– Qtenv will be included for testing and feedback, Tkenv still being the

default UI

– It will be roughly equivalent to Tkenv, in terms of UI and features

• OMNeT++ 5.1 and later:
– Qtenv will become the default, but Tkenv will continue to be included as

long as feasible or necessary

– Features will be added gradually, e.g. improved packet flow animation

16

Demo

Glider demo...

17

3D Visualization Has Arrived

3D visualization is based on OpenSceneGraph (OSG), openscenegraph.org

“OpenSceneGraph is an open source high performance 3D graphics toolkit, used by
application developers in fields such as visual simulation, games, virtual reality,
scientific visualization and modeling. Written entirely in Standard C++ and OpenGL,
it runs on all Windows platforms, OS X, GNU/Linux, IRIX, Solaris, HP-UX, AIX and
FreeBSD operating systems. OpenSceneGraph is now well established as the world
leading scene graph technology, used widely in the vis-sim, space, scientific, oil-
gas, games and virtual reality industries.”

18

http://www.openscenegraph.org/

Demo

Office demo...

19

Earth, Terrain, City Visualization

Provided by osgEarth, a geospatial SDK and terrain engine built
on top of OpenSceneGraph

“Just create a simple XML file, point it at your map data, and go!”

• Able to use various street map providers, satellite imaging providers, altitude data
sources, both online and offline

• Data from online sources may be exported into a file suitable for offline use

• Scene may be annotated with various types of graphical objects

• Includes conversion between various geographical coordinate systems

20

Scenarios

21

Terrains
Urban environments

Indoor environments
Satellites

Visualization

22

mobile nodes

transmission range

connectivity
graph

wireless transmissions

statistics

tx: 201, rx:540

Demo

More 3D demos...

23

Why Cows?

24

The Boston Cow Parade

and the OSG Cow:

The OMNeT++ API

OK! How do I...?

Basically, use the OpenSceneGraph API.

• You assemble an OSG scene graph in the model, and give it to
OMNeT++ for display. The scene graph can be updated at runtime,
and changes will be reflected in the display.

• OMNeT++ class: cOsgCanvas

– wraps a scene graph, plus hints such as default camera position

– every module has a built-in cOsgCanvas, created on demand

– additional cOsgCanvas instances may be created

• The OSG viewer is part of the OMNeT++ user interface,
Qtenv – it is not directly accessible from models

• Model code should surround OSG-specific code with #ifdef
HAVE_OSG

25

Example Code

#include <osgDB/ReadFile>
#include <omnetpp.h>
...
void DemoModule::initialize() {

osg::Node *scene = osgDB::readNodeFile("glider.osgb");
cOsgCanvas *osgCanvas = getParentModule()->getOsgCanvas();
osgCanvas->setScene(scene); // the scene graph
osgCanvas->setClearColor(cOsgCanvas::Color(0,0,64)); // hint

}

26

“Glider” demo:

“Boston” demo:
• substitute "boston.earth" for "glider.osgb"
• add the following line:

osgCanvas->setViewerStyle(cOsgCanvas::STYLE_EARTH);

Everything else is achieved by manipulating the scene graph via the OSG API!

27

Thank you for your attention!
Questions?

