PROPOSAL

For a Modular, Pluggable 802.11 MAC Model
To Faclilitate Experimentation and Contributions

IBM Research - Zurich, Switzerland— September 3-4, 2015 Andras Varga

|EEE 802.11 Model Goals_

. Full-featured, validated model

. support for fragmentation, EDCA, block acknowledgement, frame
aggregation, HT extensions, HT/legacy mixed mode... you name it

. Allow experimentation

 configurable and hackable

. Allow experimentation (and experimental features!) without putting
validity at risk

|EEE 802.11 Model Goals_

 “Allow experimentation and experimental features without
putting validity at risk” — HOW?

 Answer: modular, plug-in architecture
If part X has multiple (pluggable) implementations, then...

— users of one implementation are shielded from changes (incl.
possible bugs!) in other implementations

— you may use the simplest implementation of part X that suits
your project (less room for bugs, better performance)

— it helps accepting contributions: when a patch affects only an
“experimental” implementation of part X, code review can be
more relaxed

Problems With the Current Implementation

* Missing features

— No fragmentation, aggregation, block ack, etc.
 Monolithic

— It’s a single class, so any change will affect ALL users

* This mandates careful review and testing for each and every patch on behalf of
INET maintainers!

e Difficult to maintain and extend
Complicated logic — difficult to comprehend and contribute to
Symptoms:
— ~70 data members -- difficult to comprehend and reason about

— state machine with >50 transitions (plus some extra code on at the top
of handleWithFSM()) -- difficult to comprehend or extend

Existing State Machine

L

(WAITAIFS Do

/\—r—‘—

!’,\“ s — T

t BACKOFF)

N—
- N\ /
. _;L_\H_:_ﬁﬁ

/WAITIVIULTICAST"\

RSN,

rlebarat Y.

9 states
52 transitions

State Machine — Why?

How it grew so big?

— Part of the problem is that the state machine mixes
two different aspects: channel access (interframe
space, backoff period, retries with exponential
backoff, etc) with frame exchanges (Data+ACK,

RTS+CTS+Data+ACK,

'XOPs, etc.), and also scrams

them into a small number of states = hence the large

amount of state varia

nles and FSM transitions

We tried to refactor, really tried...
But it’s time for a reboot

New MAC — Key Ideas

Transmit process(es) decoupled from Receive
process

frame exchanges decoupled from channel access
frame exchanges as building blocks

many protocol features can be encapsulated in
their own C++ classes
— fragmentation, aggregation, automatic rate control, etc.

Basic Architecture - Concept

Higher layers

queue(s),
fragmentation,

UpperMAC frame exchanges,
etc.

(7p]
(]
=
O
| -
G4
<
=
S

chan. busy

chan. state

deals with
channel access

frame, channel state

TX Process: Interface

UpperMAC

transmitContentionFrame(frame, simtime_t ifs, simtime_t eifs, int cw);
transmitimmediateFrame(frame, simtime_t ifs);

/A transmissionComplete();

mediumStateChanged(bool busy)

badFrameReceived() [for eifs]

transmit frame over radio

v

PHY

TX Process State Machine

transmitContentionFrame(frame, ifs, eifs, cw)
* used e.g. for data frames

* Note: doesn’t contain retransmission! (it’s done elsewhere) Busy 'f:_
* receiver senses busy

remember remaining channel, or

sedkariie e we are transmitting, or
/ NAYV indicates reservation

by other station

Start &

Backoff-Done
WAIT-IFS* BACKOFF*

TX-Complete

* omitted detail: switch to EIFS on reception of frame with bad checksum, and back on correct frame

TX Process: Immediate Frames

transmitimmediateFrame(frame, ifs)
* used e.g. for ACK, CTS, immediate BA, back-to-back data frames, etc.
* no contention

Start @ IFS-Done

TX-Complete

TX Process State I\/Iachine_

e Why so simple...?
— Where is ACK, RTS/CTS, etc?
— Also, where is retransmission handling?
— EDCA?

e Reason:

— In early 802.11, frame exchanges were simple: just
Data+ACK, RTS+CTS — it could be encoded into the state

machine.

Today, no longer! TXOP, Block ACK sequences, reverse
direction frame exchange, etc...

So: we want to take the complexity somewhere else
— EDCA: just create 4 instances of TX

RX Process: Interface

UpperMAC

A lowerFrameArrived(frame)

mediumStateChanged(bool busy)

< performs FCS check,
<badFrameReceived() maintains NAV

mediumStateChanged()
handleLowerFrame(frame)

PHY

UpperMAC: Interface

Upper layers

upperFrameArrived(frame)

UpperMAC

transmissionComplete()

transmitContentionFrame(frame, ifs, eifs, cw)
vtransmitlmmediateFrame(frame, ifs)

sendUp(frame)

lowerFrameArrived(frame)

X

UpperMAC

Deals with exchanging frames
Doesn’t need to care about channel access

— reduces complexity!
REPLACEABLE! May have simple, advanced and
experimental variants

— 80211b/g, 80211e, 80211n, experimentall,
experimental2, etc.

May be modular in itself (see next slides)

Frame Exchanges

Frame exchanges are...
C++ classes, used as building block for UpperMAC

Created dynamically in UpperMAC as response to
incoming frames or possibly other events

Composable (?)

Examples:
— Data ACK
RTS CTS Data Ack
RTS CTS Data Data Data BAR BA
Reverse direction frame exchange
May map to one TXOP or multiple TXOPs

Frame Exchange: Interface

Containing UpperMAC

construction,

start() :
- frameExchangeFinished(bool success)

FrameExchange

- transmissionComplete()

transmitContentionFrame(frame, ifs, eifs, cw) | loWerFrameArrived(frame)

vtransmitlmmediateFrame(frame, ifs)

X RX (via UpperMAC)

Implementation as State Machine

 Frame Exchange classes may be implemented in terms of state
machines. Example: Data + ACK

STA1 contention DATA

STA2 SUCCESS

TRANSMIT-
DATA

WAIT-ACK

Timeout & retryCount = max

Timeout & retryCount < max / FAILURE

* invokes transmitContentionFrame() update cw \

 frames that arrive during IFS and .
backoff are processed separately by Exponentlal backoff

UpperMAC (ACKed, etc) procedure is here!

Step-Based Frame Exchanges

* Frame exchange classes allow for a concise and natural
mapping of protocol to code

Example: RTS+CTS+Data+ACK exchange:

contention RTS

— Can be described in terms of send and expect steps!

— So: why not define a StepBasedFrameExhange base class that
defines send and expect as primitives?

— Note one difficulty: RTS needs to be retransmitted if there’s no
CTS

Step-Based Frame Exchange

class SendDataWithRtsCtsFrameExchange : public StepBasedFrameExchange { ... };

bool SendDataWithRtsCtsFrameExchange::doStep(int step) {

switch (step) {
case 0: transmitContentionFrame(buildRtsFrame(dataFrame, difs,...)); return true;
case 1: expectReply(ctsTimeout); return true; // true=more steps to follow
case 2: transmitImmediateFrame(dataFrame, sifs); return true;
case 3: expectReply(ackTimeout); return false; // false=no more steps

}
bool SendDataWithRtsCtsFrameExchange: :processReply(int step, Ieee80211Frame *frame) {

switch (step) {
case 1: return isCtsFrom(frame, destAddress); // true=accepted
case 3: return isAckFrom(frame, destAddress);

}

void SendDataWithRtsCtsFrameExchange: :processTimeout(int step) {
switch (step) {
case 1: if (retryCount < max) {incRetryVariables(); gotoStep(9);} else fail(); brea
case 3: fail(); break;

Further Componentization Possibilities

Candidates for wrapping into self-contained classes:
Fragmentation
MSDU aggregation
MPDU aggregation
Rate control

Frame exchange selection policy

Status

Early implementation draft exists
Looking for contributors once the design is getting stable

The plan is to implement multiple UpperMACs of
increasing complexity

. J

802.11 802.11 802.11 802.11
EDCA e n ac
J L
Y. Y

We plan to implement these, And hope the community
as proof of concept will add others

Let’s dlscu};} it!

