
PROPOSAL

For a Modular, Pluggable 802.11 MAC Model

To Facilitate Experimentation and Contributions

Andras VargaIBM Research - Zurich, Switzerland– September 3-4, 2015

1

IEEE 802.11 Model Goals

1. Full-featured, validated model
• support for fragmentation, EDCA, block acknowledgement, frame

aggregation, HT extensions, HT/legacy mixed mode... you name it

2. Allow experimentation
• configurable and hackable

3. Allow experimentation (and experimental features!) without putting
validity at risk

2

IEEE 802.11 Model Goals

• “Allow experimentation and experimental features without
putting validity at risk” – HOW?

• Answer: modular, plug-in architecture
If part X has multiple (pluggable) implementations, then...

– users of one implementation are shielded from changes (incl.
possible bugs!) in other implementations

– you may use the simplest implementation of part X that suits
your project (less room for bugs, better performance)

– it helps accepting contributions: when a patch affects only an
“experimental” implementation of part X, code review can be
more relaxed

3

...

Problems With the Current Implementation

• Missing features

– No fragmentation, aggregation, block ack, etc.

• Monolithic

– It’s a single class, so any change will affect ALL users
• This mandates careful review and testing for each and every patch on behalf of

INET maintainers!

• Difficult to maintain and extend
Complicated logic – difficult to comprehend and contribute to

Symptoms:

– ~70 data members -- difficult to comprehend and reason about

– state machine with >50 transitions (plus some extra code on at the top
of handleWithFSM()) -- difficult to comprehend or extend

4

Existing State Machine

5

9 states
52 transitions

State Machine – Why?

How it grew so big?
– Part of the problem is that the state machine mixes

two different aspects: channel access (interframe
space, backoff period, retries with exponential
backoff, etc) with frame exchanges (Data+ACK,
RTS+CTS+Data+ACK, TXOPs, etc.), and also scrams
them into a small number of states hence the large
amount of state variables and FSM transitions

We tried to refactor, really tried...
But it’s time for a reboot

6

New MAC – Key Ideas

• Transmit process(es) decoupled from Receive
process

• frame exchanges decoupled from channel access

• frame exchanges as building blocks

• many protocol features can be encapsulated in
their own C++ classes

– fragmentation, aggregation, automatic rate control, etc.

7

Basic Architecture - Concept

TX RX

UpperMAC

PHY

Higher layers

NAV
chan. state

frame, channel stateframe

frame

chan. busy

queue(s),
fragmentation,
frame exchanges,
etc.

frame

d
e

al
s

w
it

h
 f

ra
m

e
s

d
e

al
s

w
it

h
ch

an
n

e
l a

cc
es

s

8

TX Process: Interface

TX

transmitContentionFrame(frame, simtime_t ifs, simtime_t eifs, int cw);
transmitImmediateFrame(frame, simtime_t ifs);

transmissionComplete();

transmit frame over radio

mediumStateChanged(bool busy)

PHY

UpperMAC

R
X

badFrameReceived() [for eifs]

9

TX Process State Machine

Busy if:
• receiver senses busy

channel, or
• we are transmitting, or
• NAV indicates reservation

by other station

transmitContentionFrame(frame, ifs, eifs, cw)
• used e.g. for data frames
• Note: doesn’t contain retransmission! (it’s done elsewhere)

IDLE WAIT-IFS* BACKOFF*
Start &
!Busy

IFS-Done

TX-Complete

TRANSMIT
Backoff-Done

DEFER

Ch-Busy
Ch-Busy

Start &
Busy

Ch-Free

* omitted detail: switch to EIFS on reception of frame with bad checksum, and back on correct frame

remember remaining
backoff time here

10

TX Process: Immediate Frames

transmitImmediateFrame(frame, ifs)
• used e.g. for ACK, CTS, immediate BA, back-to-back data frames, etc.
• no contention

IDLE WAIT-IFS TRANSMIT
Start IFS-Done

TX-Complete

11

TX Process State Machine

• Why so simple...?
– Where is ACK, RTS/CTS, etc?
– Also, where is retransmission handling?
– EDCA?

• Reason:
– In early 802.11, frame exchanges were simple: just

Data+ACK, RTS+CTS – it could be encoded into the state
machine.
Today, no longer! TXOP, Block ACK sequences, reverse
direction frame exchange, etc...
So: we want to take the complexity somewhere else

– EDCA: just create 4 instances of TX

12

RX Process: Interface

RX

lowerFrameArrived(frame)

mediumStateChanged()
handleLowerFrame(frame)

mediumStateChanged(bool busy)

PHY

UpperMAC

TX

badFrameReceived()
NAV

performs FCS check,
maintains NAV

13

UpperMAC: Interface

UpperMAC

transmitContentionFrame(frame, ifs, eifs, cw)
transmitImmediateFrame(frame, ifs)

transmissionComplete()

TX

Upper layers

RX

lowerFrameArrived(frame)

upperFrameArrived(frame) sendUp(frame)

14

UpperMAC

• Deals with exchanging frames

• Doesn’t need to care about channel access

– reduces complexity!

• REPLACEABLE! May have simple, advanced and
experimental variants

– 80211b/g, 80211e, 80211n, experimental1,
experimental2, etc.

• May be modular in itself (see next slides)

15

Frame Exchanges

Frame exchanges are...
• C++ classes, used as building block for UpperMAC
• Created dynamically in UpperMAC as response to

incoming frames or possibly other events
• Composable (?)
• Examples:

– Data ACK
– RTS CTS Data Ack
– RTS CTS Data Data Data BAR BA
– Reverse direction frame exchange
– May map to one TXOP or multiple TXOPs

16

Frame Exchange: Interface

FrameExchange

transmitContentionFrame(frame, ifs, eifs, cw)
transmitImmediateFrame(frame, ifs)

frameExchangeFinished(bool success)

TX RX (via UpperMAC)

lowerFrameArrived(frame)

construction,
start()

transmissionComplete()

Containing UpperMAC

17

Implementation as State Machine

• Frame Exchange classes may be implemented in terms of state
machines. Example: Data + ACK

• invokes transmitContentionFrame()
• frames that arrive during IFS and

backoff are processed separately by
UpperMAC (ACKed, etc)

Exponential backoff
procedure is here!

INIT
TRANSMIT-

DATA
WAIT-ACK

Start TX-Complete

SUCCESS

FAILURETimeout & retryCount < max /
update cw

Timeout & retryCount = max

ACK

STA1

STA2

DATA

ACK

contention

18

Step-Based Frame Exchanges

• Frame exchange classes allow for a concise and natural
mapping of protocol to code

Example: RTS+CTS+Data+ACK exchange:

– Can be described in terms of send and expect steps!

– So: why not define a StepBasedFrameExhange base class that
defines send and expect as primitives?

– Note one difficulty: RTS needs to be retransmitted if there’s no
CTS

STA1

STA2

DATA

ACKCTS

RTScontention

19

Step-Based Frame Exchange
class SendDataWithRtsCtsFrameExchange : public StepBasedFrameExchange { ... };

bool SendDataWithRtsCtsFrameExchange::doStep(int step) {

switch (step) {

case 0: transmitContentionFrame(buildRtsFrame(dataFrame, difs,...)); return true;

case 1: expectReply(ctsTimeout); return true; // true=more steps to follow

case 2: transmitImmediateFrame(dataFrame, sifs); return true;

case 3: expectReply(ackTimeout); return false; // false=no more steps

}

}

bool SendDataWithRtsCtsFrameExchange::processReply(int step, Ieee80211Frame *frame) {

switch (step) {

case 1: return isCtsFrom(frame, destAddress); // true=accepted

case 3: return isAckFrom(frame, destAddress);

}

}

void SendDataWithRtsCtsFrameExchange::processTimeout(int step) {

switch (step) {

case 1: if (retryCount < max) {incRetryVariables(); gotoStep(0);} else fail(); break

case 3: fail(); break;

}

}
20

Further Componentization Possibilities

Candidates for wrapping into self-contained classes:

• Fragmentation

• MSDU aggregation

• MPDU aggregation

• Rate control

• Frame exchange selection policy

• ...

21

Status

• Early implementation draft exists

• Looking for contributors once the design is getting stable

• The plan is to implement multiple UpperMACs of
increasing complexity

802.11
b/g

802.11
EDCA

802.11
e

802.11
n

802.11
ac ...

We plan to implement these,
as proof of concept

And hope the community
will add others

22

23

What do you think?
Let’s discuss it!

