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Motivation: Need for Parallel Network Simulation 

• IBM’s Venus HPC Network Simulator is built on OMNeT++ 

• Significant IBM investment over the last 5 years 

• OMNeT++ provides basic building blocks and tools to develop 

sequential event-driven models 

• Written in C++ with a rich class library that provides: 

• Sim kernel, RNG, stats, topology discovery 

• “Modules” and “channels” abstractions   

• NED language for easy model configuration 

• Challenge: sequential simulation execution times of days to  

weeks depending on the traffic load and topology size 

• Solution:  Enable scalable parallel network simulation for 

Venus network models on the Blue Gene/Q and MPI 

clusters 

 

Goal: 50 to 100x speedup using BG/Q 
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IBM Blue Gene/Q Architecture 

• 1.6 GHz IBM A2 processor 

• 16 cores (4-way threaded) 

• 16 GB DDR3 per node 

• 42.6 GB/s bandwidth 

• 32 MB L2 cache 

• 204.8 GFLOPS (peak) 

• 55 watts of power 

• 5D Torus @ 2 GB/s network 

 

1 Rack =  

• 1024 Nodes, or 

• 16,384 Cores, or 

• Up to 65,536 

threads or MPI 

tasks 

• 1.6 GHz IBM A2 processor 

• 16 cores (4-way threaded) + 17th 

core for OS to avoid jitter and an 

18th to improve yield 

• 204.8 GFLOPS (peak) 

• 16 GB DDR3 per node 

• 42.6 GB/s bandwidth 

• 32 MB L2 cache @ 563 GB/s 

• 55 watts of power 

• 5D Torus @ 2 GB/s per link for all 

P2P and collective comms 

 
1 Rack =  

• 1024 Nodes, or 

• 16,384 Cores, or 

• Up to 65,536 threads or 

MPI tasks 



“Balanced” Supercomputer @ CCI 

• IBM Blue Gene/Q 

• 5120 nodes / 81920 cores 

– 1 teraFLOPS @ 2+ GF/watt 

– 10PF and 20PF DOE systems  

– Exec Model: MPI + threads 

– 80 TB RAM 

– 160 I/O nodes (4x over other BG/Qs) 

 

• Clusters 

– 64 Intel nodes @ 128 GB RAM each 

– 32 Intel nodes @ 256 GB each 

 

• Disk storage: ~2 Petabytes 

– IBM ESS w/ GPFS 

– Bandwidth: 5 to ~20 GB/sec 

• FDR 56 Gbit/sec Infiniband core network 

 



OMNeT++: Null Message Protocol (NMP) 

Null Message Protocol (executed by each MPI rank): 

Goal: Ensure events are processed in time stamp order and avoid 

deadlock 

WHILE (simulation is not over) 

 wait until each FIFO contains at least one message 

 remove smallest time stamped event from its FIFO 

 process that event 

 send null messages to neighboring LPs with time stamp indicating a  

 lower bound on future messages sent to that LP (current time plus 

 minimum transit time between cModules or cSimpleModules) 

END-LOOP 

Variation: LP requests null message when FIFO becomes empty 

• Fewer null messages 

• Delay to get time stamp information 



NMP and Lookahead Constraint 

• The Null Message Protocol relies on a “prediction” ability 

referred to as lookahead  

• Airport example: “ORD at simulation time 5, minimum transit 

time between airports is 3, so the next message sent by ORD 

must have a time stamp of at least 8” 

• Link lookahead: If an LP is at simulation time T, and an 

outgoing link has lookahead Li, then any message sent on that 

link must have a time stamp of at least T+Li 

• LP Lookahead: If an LP is at simulation time T, and has a 

lookahead of L, then any message sent by that LP must will 

have a time stamp of at least T+L 

• Equivalent to link lookahead where the lookahead on each 

outgoing link is the same 



NMP: The Time Creep Problem 

Many null messages if minimum flight time is small! 
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JFK 

(waiting 

on ORD) 

ORD 

(waiting 
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SFO 
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Assume minimum delay between airports is 3 units of time 

JFK initially at time 5 

0.5 

5.5 

 JFK: timestamp = 5.5 

Null messages: 

6.0 

 SFO: timestamp = 6.0 6.5 

 ORD: timestamp = 6.5 

7.0  JFK: timestamp = 7.0 

7.5 

 SFO: timestamp = 7.5 

Five null messages to process a single event! 

ORD: process time 

stamp 7 message 
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Null Message Algorithm: Speed Up 

• toroid topology 

• message density: 4 per LP 

• 1 millisecond computation per event 

• vary time stamp increment distribution 

• ILAR=lookahead / average time 

stamp increment 

Conservative algorithms live or die by their lookahead! 



Overview of YAWNs Into OMNeT++  

YAWNS_Event_Processing() 

// This is a windowing type protocol 

//  to avoid NULL messages!! 

while true do 

 process network queues 

 process inbound event queue 

 if smallest event >= GVT + 
   Lookahead then 

  compute new GVT 

 end if 

 if simulation end time then 

  break 

 end if 

 process events  subject to: 

   event.ts < GVT + Lookahead 

end while 
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• Must use OMNeT++ existing parallel 

simulation framework due to object 

ownership rules 

• Migrated YAWNS implementation 

from ROSS into OMNeT++  

• ROSS has shown great 

performance out to 16K cores 

• Translated iterative scheduler 

into a re-entrant one using API 

• Uses a single global model 

“lookahead” value 

• Allows zero timestamp increment 

messages to “self” 

• Can switch from NullMessage or 

YAWNS w/i OMNeT++ model config. 



YAWNS vs. Optimistic on 16K BG/L Cores Using ROSS  

At large lookaheads, 

conservative and 

optimistic performance are 

nearly equal  

Conservative very poor at 

low lookahead relative to 

avg. TS increment which 

we can have in system 

models 
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GVT: Global Control Implementation 

GVT (kicks off when memory is low): 

1. Each core counts #sent, #recv 

2. Recv all pending MPI msgs. 

3. MPI_Allreduce Sum on (#sent - 
#recv) 

4. If #sent - #recv != 0 goto 2 

5. Compute local core’s lower 
bound time-stamp (LVT). 

6. GVT = MPI_Allreduce Min on 
LVTs 

An interval parameter or lack of local 
events controls when GVT is 
done. 

Repurposed GVT to implement 
conservative YAWNS algorithm! 

GVT is typically used by Time 
Warp/Optimistic synchronization 

Global Control Mechanism: 

compute Global Virtual Time (GVT) 

LP 1 LP 2 LP 3 
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& perform I/O 

operations 

that are < GVT 



OMNeT++ Parsim API  

• OMNeT++ Parsim API supports new conservative 

parallel algorithms 

• NMP and “ideal” supported 

• New algorithm must write the following methods: 

• class constructor and destructor 

• startRun(): 

• setContext(): 

• endRun(): 

• processOutgoingMessage(): 

• processReceivedBuffer(): 

• getNextEvent():  

• reScheduleEvent(); 
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OMNeT++ YAWNs: startRun() & endRun()  
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cYAWNS::startRun() 

• Init segment and partition information 

• Exec correct lookahead calculation method using 

segment/partition information 

• Note, OPP::SimTime::getMaxTime() does not 

work on Blue Gene/Q. 

• MaxTime hardwired to 10 seconds 

•    

cYAWNS::endRun() 

• Computes one last GVT if needed 

• Cleans-up the lookahead calc 

• Need to more fully understand OMNeT’s 

exception generation and handling mechanisms 

  



OMNeT++ YAWNs: Processing Messages  
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cYAWNS::processOutGoingMessages() 

• All remote messages sent using “blocking” MPI 

operations 

• Message data is “packed” into a single block of 

memory 

• Records  destination module ID and gate ID 

information 

• Model messages tagged as CMESSAGE 

• Increments message sent counter used by GVT   

cYAWNS::processRecievedBuffer() 

• “Unpacks” MPI message into a cMesssage class  

• Increments message recv’ed counter used by 

GVT 

  



OMNeT++ YAWNs: getNextEvent()  
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cMessage *cYAWNS::getNextEvent() 
  static unsigned batch = 0; 
 cMessage *msg; 

 while (true) 

    { 

     batch++; 

     if(batch == YAWNS_BATCH) { 

        batch = 0; 

        tw_gvt_step1(); //ROSS 

        tw_gvt_step2(); //ROSS 

     } 

     if(GVT == YAWNS_ENDRUN) 

        return NULL; 

     if( GVT > endOfTime ) 

        return NULL;  

  

 

msg=sim->msgQueue.peekFirst(); 

if (!msg) continue; 

if (msg->getArrivalTime() >  

    GVT + LA) 

   { 

    batch = YAWNS_BATCH - 1; 

    continue; 

    } 

 return msg; 

} // end while 

 

return msg; 



Porting OMNeT++ to IBM Blue Gene/Q  
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• Run ./configure on standard Linux system 

• OMNeT ./configure will not complete on BG/Q 

• Move OMNeT++ repo to Blue Gene/Q front end  

• Build flex, bison, libXML, Sqllite3 and zlib for BG/Q. 

• Turn off TCL/TK 

• Edit Makefile.in for BG/Q 

• Switch to IBM XLC compiler from GCC 

• Flags: -O3 -qhot -qpic=large -qstrict 

-qarch=qp -qtune=qp -qmaxmem=-1 -

DHAVE_SWAPCONTEXT  -DHAVE_PCAP -

DWITH_PARSIM -DWITH_MPI -

DWITH_NETBUILDER 

• Discovered connection of remote gates create MPI 

failure at > 256 cores 



Re-write of cParsimPartition::connectRemoteGates()  
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• Original Algorithm: each MPI rank would send a point-

2-point message to all other ranks with list of cGate 

objects 

• Failure mode: would result in each MPI rank needing to 

dedicated GBs of RAM to MPI internal memory for 

message data handling.  

• MPI on BG/Q was not intended to be used this way @ 

larger rank counts 

• Re-write approach: Let each MPI rank use MPI_Bcast 

to send it’s cGate object data to all other rank.  

• Other mod: use gate index and not name to look-up 

gate object on receivers sides.  

• Improved Performance by 6x 

At 2K MPI ranks, takes about ~30 mins to init a 64K 

node network model  



Venus Network Model Configuration 

• 65,536 node Fat Tree, 3 levels, double sided 

• 64 ports switches 

• 2K switches @ L1 and L2, 1K @ L3 , 5120 switches total 

• Random nearest neighbor traffic 

• 25%, 50%, 80% max injection workload 

• Link bandwidth: 50 GB/sec 

• Link delay: 10.2 ns 

• Network adaptor and switch delays: 100 ns 

• Sim time: 120 us 

• Routing: DModK 

• Serial Platform: AMD Opteron 6272, 2.1 GHz , 512 GB RAM 

• Parallel Platform: “AMOS” 5-rack BG/Q system, 1K cores used 
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Validation of Venus Model in Parallel 
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Run Time: YAWNS vs. NMP @ 25% Workload  
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MPI Time: YAWNS vs. NMP @ 25% Workload  



23 

Run Time: YAWNS vs. NMP @ 80% Workload  
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MPI Time: YAWNS vs. NMP @ 80% Workload  
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Speedup of YAWNS on BG/Q vs. AMD Server  



Future Work 
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• Ensure YAWNS works with all uses of OMNeT++ exceptions 

• Still a work-in-progress 

• Modify OMNeT++ MPI layer to use non-blocking MPI send/recv 

operations 

• Enable MPI ranks to be “idle” processes to support wider range of 

network configurations and parallel partitions (e.g. a 13824 node 

network does not map well to 1024 BG/Q cores) 

• Conduct detailed performance study of YAWNS on: 

• Changes in topology 

• Changes in topology size/scale 

• Changes in network partitioning 

• Changes in model lookahead 

• Release YAWNS implementation as open source  

 


