
Enabling Scalable Parallel Processing of Venus/OMNeT++

Network Models on the IBM Blue Gene/Q Supercomputer

Chris Carothers,

Elsa Gonsiorowski and

Justin LaPre

Center for Computational Innovations

Rensselaer Polytechnic Institute

Philip Heidelberger,

German Herrera,

Cyriel Minkenberg and

Bogdan Prisacari
IBM Research, TJ Watson and Zurich

Outline

• Motivation and Goals

• IBM Blue Gene/Q

• PDES & YAWNS

• YAWNS Implementation

• Porting Venus/OMNeT++

• Performance Results

• Plans for the Future

2

Motivation: Need for Parallel Network Simulation

• IBM’s Venus HPC Network Simulator is built on OMNeT++

• Significant IBM investment over the last 5 years

• OMNeT++ provides basic building blocks and tools to develop

sequential event-driven models

• Written in C++ with a rich class library that provides:

• Sim kernel, RNG, stats, topology discovery

• “Modules” and “channels” abstractions

• NED language for easy model configuration

• Challenge: sequential simulation execution times of days to

weeks depending on the traffic load and topology size

• Solution: Enable scalable parallel network simulation for

Venus network models on the Blue Gene/Q and MPI

clusters

Goal: 50 to 100x speedup using BG/Q

3

IBM Blue Gene/Q Architecture

• 1.6 GHz IBM A2 processor

• 16 cores (4-way threaded)

• 16 GB DDR3 per node

• 42.6 GB/s bandwidth

• 32 MB L2 cache

• 204.8 GFLOPS (peak)

• 55 watts of power

• 5D Torus @ 2 GB/s network

1 Rack =

• 1024 Nodes, or

• 16,384 Cores, or

• Up to 65,536

threads or MPI

tasks

• 1.6 GHz IBM A2 processor

• 16 cores (4-way threaded) + 17th

core for OS to avoid jitter and an

18th to improve yield

• 204.8 GFLOPS (peak)

• 16 GB DDR3 per node

• 42.6 GB/s bandwidth

• 32 MB L2 cache @ 563 GB/s

• 55 watts of power

• 5D Torus @ 2 GB/s per link for all

P2P and collective comms

1 Rack =

• 1024 Nodes, or

• 16,384 Cores, or

• Up to 65,536 threads or

MPI tasks

“Balanced” Supercomputer @ CCI

• IBM Blue Gene/Q

• 5120 nodes / 81920 cores

– 1 teraFLOPS @ 2+ GF/watt

– 10PF and 20PF DOE systems

– Exec Model: MPI + threads

– 80 TB RAM

– 160 I/O nodes (4x over other BG/Qs)

• Clusters

– 64 Intel nodes @ 128 GB RAM each

– 32 Intel nodes @ 256 GB each

• Disk storage: ~2 Petabytes

– IBM ESS w/ GPFS

– Bandwidth: 5 to ~20 GB/sec

• FDR 56 Gbit/sec Infiniband core network

OMNeT++: Null Message Protocol (NMP)

Null Message Protocol (executed by each MPI rank):

Goal: Ensure events are processed in time stamp order and avoid

deadlock

WHILE (simulation is not over)

 wait until each FIFO contains at least one message

 remove smallest time stamped event from its FIFO

 process that event

 send null messages to neighboring LPs with time stamp indicating a

 lower bound on future messages sent to that LP (current time plus

 minimum transit time between cModules or cSimpleModules)

END-LOOP

Variation: LP requests null message when FIFO becomes empty

• Fewer null messages

• Delay to get time stamp information

NMP and Lookahead Constraint

• The Null Message Protocol relies on a “prediction” ability

referred to as lookahead

• Airport example: “ORD at simulation time 5, minimum transit

time between airports is 3, so the next message sent by ORD

must have a time stamp of at least 8”

• Link lookahead: If an LP is at simulation time T, and an

outgoing link has lookahead Li, then any message sent on that

link must have a time stamp of at least T+Li

• LP Lookahead: If an LP is at simulation time T, and has a

lookahead of L, then any message sent by that LP must will

have a time stamp of at least T+L

• Equivalent to link lookahead where the lookahead on each

outgoing link is the same

NMP: The Time Creep Problem

Many null messages if minimum flight time is small!

9 8

JFK

(waiting

on ORD)

ORD

(waiting

on SFO)

SFO

(waiting

on JFK)

15
10

7

Assume minimum delay between airports is 3 units of time

JFK initially at time 5

0.5

5.5

 JFK: timestamp = 5.5

Null messages:

6.0

 SFO: timestamp = 6.0 6.5

 ORD: timestamp = 6.5

7.0 JFK: timestamp = 7.0

7.5

 SFO: timestamp = 7.5

Five null messages to process a single event!

ORD: process time

stamp 7 message

7

Null Message Algorithm: Speed Up

• toroid topology

• message density: 4 per LP

• 1 millisecond computation per event

• vary time stamp increment distribution

• ILAR=lookahead / average time

stamp increment

Conservative algorithms live or die by their lookahead!

Overview of YAWNs Into OMNeT++

YAWNS_Event_Processing()

// This is a windowing type protocol

// to avoid NULL messages!!

while true do

 process network queues

 process inbound event queue

 if smallest event >= GVT +
 Lookahead then

 compute new GVT

 end if

 if simulation end time then

 break

 end if

 process events subject to:

 event.ts < GVT + Lookahead

end while

10

• Must use OMNeT++ existing parallel

simulation framework due to object

ownership rules

• Migrated YAWNS implementation

from ROSS into OMNeT++

• ROSS has shown great

performance out to 16K cores

• Translated iterative scheduler

into a re-entrant one using API

• Uses a single global model

“lookahead” value

• Allows zero timestamp increment

messages to “self”

• Can switch from NullMessage or

YAWNS w/i OMNeT++ model config.

YAWNS vs. Optimistic on 16K BG/L Cores Using ROSS

At large lookaheads,

conservative and

optimistic performance are

nearly equal

Conservative very poor at

low lookahead relative to

avg. TS increment which

we can have in system

models

11

GVT: Global Control Implementation

GVT (kicks off when memory is low):

1. Each core counts #sent, #recv

2. Recv all pending MPI msgs.

3. MPI_Allreduce Sum on (#sent -
#recv)

4. If #sent - #recv != 0 goto 2

5. Compute local core’s lower
bound time-stamp (LVT).

6. GVT = MPI_Allreduce Min on
LVTs

An interval parameter or lack of local
events controls when GVT is
done.

Repurposed GVT to implement
conservative YAWNS algorithm!

GVT is typically used by Time
Warp/Optimistic synchronization

Global Control Mechanism:

compute Global Virtual Time (GVT)

LP 1 LP 2 LP 3

V

i

r

t

u
a

l

T

i
m

e

GVT

collect versions

of state / events

& perform I/O

operations

that are < GVT

OMNeT++ Parsim API

• OMNeT++ Parsim API supports new conservative

parallel algorithms

• NMP and “ideal” supported

• New algorithm must write the following methods:

• class constructor and destructor

• startRun():

• setContext():

• endRun():

• processOutgoingMessage():

• processReceivedBuffer():

• getNextEvent():

• reScheduleEvent();

13

OMNeT++ YAWNs: startRun() & endRun()

14

cYAWNS::startRun()

• Init segment and partition information

• Exec correct lookahead calculation method using

segment/partition information

• Note, OPP::SimTime::getMaxTime() does not

work on Blue Gene/Q.

• MaxTime hardwired to 10 seconds

•

cYAWNS::endRun()

• Computes one last GVT if needed

• Cleans-up the lookahead calc

• Need to more fully understand OMNeT’s

exception generation and handling mechanisms

OMNeT++ YAWNs: Processing Messages

15

cYAWNS::processOutGoingMessages()

• All remote messages sent using “blocking” MPI

operations

• Message data is “packed” into a single block of

memory

• Records destination module ID and gate ID

information

• Model messages tagged as CMESSAGE

• Increments message sent counter used by GVT

cYAWNS::processRecievedBuffer()

• “Unpacks” MPI message into a cMesssage class

• Increments message recv’ed counter used by

GVT

OMNeT++ YAWNs: getNextEvent()

16

cMessage *cYAWNS::getNextEvent()
 static unsigned batch = 0;
 cMessage *msg;

 while (true)

 {

 batch++;

 if(batch == YAWNS_BATCH) {

 batch = 0;

 tw_gvt_step1(); //ROSS

 tw_gvt_step2(); //ROSS

 }

 if(GVT == YAWNS_ENDRUN)

 return NULL;

 if(GVT > endOfTime)

 return NULL;

msg=sim->msgQueue.peekFirst();

if (!msg) continue;

if (msg->getArrivalTime() >

 GVT + LA)

 {

 batch = YAWNS_BATCH - 1;

 continue;

 }

 return msg;

} // end while

return msg;

Porting OMNeT++ to IBM Blue Gene/Q

17

• Run ./configure on standard Linux system

• OMNeT ./configure will not complete on BG/Q

• Move OMNeT++ repo to Blue Gene/Q front end

• Build flex, bison, libXML, Sqllite3 and zlib for BG/Q.

• Turn off TCL/TK

• Edit Makefile.in for BG/Q

• Switch to IBM XLC compiler from GCC

• Flags: -O3 -qhot -qpic=large -qstrict

-qarch=qp -qtune=qp -qmaxmem=-1 -

DHAVE_SWAPCONTEXT -DHAVE_PCAP -

DWITH_PARSIM -DWITH_MPI -

DWITH_NETBUILDER

• Discovered connection of remote gates create MPI

failure at > 256 cores

Re-write of cParsimPartition::connectRemoteGates()

18

• Original Algorithm: each MPI rank would send a point-

2-point message to all other ranks with list of cGate

objects

• Failure mode: would result in each MPI rank needing to

dedicated GBs of RAM to MPI internal memory for

message data handling.

• MPI on BG/Q was not intended to be used this way @

larger rank counts

• Re-write approach: Let each MPI rank use MPI_Bcast

to send it’s cGate object data to all other rank.

• Other mod: use gate index and not name to look-up

gate object on receivers sides.

• Improved Performance by 6x

At 2K MPI ranks, takes about ~30 mins to init a 64K

node network model

Venus Network Model Configuration

• 65,536 node Fat Tree, 3 levels, double sided

• 64 ports switches

• 2K switches @ L1 and L2, 1K @ L3 , 5120 switches total

• Random nearest neighbor traffic

• 25%, 50%, 80% max injection workload

• Link bandwidth: 50 GB/sec

• Link delay: 10.2 ns

• Network adaptor and switch delays: 100 ns

• Sim time: 120 us

• Routing: DModK

• Serial Platform: AMD Opteron 6272, 2.1 GHz , 512 GB RAM

• Parallel Platform: “AMOS” 5-rack BG/Q system, 1K cores used

19

20

Validation of Venus Model in Parallel

21

Run Time: YAWNS vs. NMP @ 25% Workload

22

MPI Time: YAWNS vs. NMP @ 25% Workload

23

Run Time: YAWNS vs. NMP @ 80% Workload

24

MPI Time: YAWNS vs. NMP @ 80% Workload

25

Speedup of YAWNS on BG/Q vs. AMD Server

Future Work

26

• Ensure YAWNS works with all uses of OMNeT++ exceptions

• Still a work-in-progress

• Modify OMNeT++ MPI layer to use non-blocking MPI send/recv

operations

• Enable MPI ranks to be “idle” processes to support wider range of

network configurations and parallel partitions (e.g. a 13824 node

network does not map well to 1024 BG/Q cores)

• Conduct detailed performance study of YAWNS on:

• Changes in topology

• Changes in topology size/scale

• Changes in network partitioning

• Changes in model lookahead

• Release YAWNS implementation as open source

