
Plans for OMNeT++ 5.1
András Varga

OMNeT++ Community Summit 2016, Brno University of Technology (FIT-BUT), Sept 15-16.

Once upon a time...

OMNeT++ 5.0 was released in April.

With new APIs and components, and lots of breaking changes: 2D and 3D graphics support
(Canvas, OpenSceneGraph), new graphical runtime (Qtenv), new logging API, and so on.

However…

There were a lot of things we had to cut from 5.0 so as not to delay shipping indefinitely: upgrading
to the latest Eclipse, upgrading the Windows toolchain, rethinking the build system, properly
finishing Qtenv, polishing the Canvas API, brushing up SQLite code we wrote earlier, etc.

2

OMNeT++ 5.1

Changes are centered around the following topics:

● Upgrading our dependencies (Eclipse, toolchain, etc.)
● Improving Project Features support and C++ build of large models
● Finishing Qtenv
● Canvas API refinements
● Improvements in the simulation kernel
● Better animation support (in progress, maybe 5.2 only)
● Better support for simulation campaigns (in progress, maybe 5.2 only)

3

Updating our dependencies

● New Eclipse version
○ Eclipse 4.6 Neon (Java 1.8 required)
○ CDT 9.0

● Support for 64-bit Windows using MinGW-w64
○ Dropped support for 32-bit (reason: 32-bit OSes are on the way out, and shipping both 32 and

64-bit libraries would blow up download size)

● Qt5 required
○ Qt5.0 was released in 2012, 4 years ago

● OSG 3.2–3.5, osgEarth 2.5–2.7

4

Build: Using compiler-generated dependencies

● What are compiler-generated dependencies?
○ *.d files under out/ (one for each .o file); makefile includes out/../*.d

○ Produced as a “side effect” of compilation, and reused for subsequent builds; make clean
deletes them

○ Used both for OMNeT++ and models
○ Requires compiler support (e.g. gcc/clang -MMD option)

● Advantages:
○ “make depend” no longer needed

○ IDE: No more waiting for the
“Collecting includes…” dialog

5

More changes in C++ build support

● Support for deep includes has been dropped
○ Deep includes: automatically adding each subfolder to the include path, so #include don’t

need to specify folders
○ Experience has shown it was not really useful:

■ Not needed for small projects
■ Too error-prone in large projects

● IDE: Refinements in the Makemake Options
dialog and in makefile generation

6

Improving Project Features support

● What is Project Features again?
○ A way to break up a large project into smaller pieces that can be

turned on/off separately (added to / removed from the build)
○ Accessible from both IDE and command line (opp_featuretool)

● Change: Symbols for enabled features (WITH_IPv4) are
now placed into a generated header file, not passed to the
compiler via -D options

○ Name of header file is part of .oppfeatures (feature definition file)
○ Advantages:

■ Indexer knows about them (and #ifdef blocks are shown with
proper enablement state)

■ Easier access from derived projects
7

Qtenv

● Qtenv has reached maturity
○ Tons of bug fixes and improvements
○ It is now the default GUI for simulations

● Tkenv
○ Can still be activated using -u Tkenv

○ Maintained, but not actively developed any more
(new features will be Qtenv-only)

○ Will be kept around until there is consensus that it can be dropped

● UI improvements
○ Improved simulation time display (digit grouping

and units)
○ Context menu adjustments
○ Other usability improvements 8

Canvas improvements

● cFigure additions
○ Tooltip
○ Associated cObject
○ zIndex
○ Text halo

● Support for text extent and image size
○ Getting the bounding box for text and image (icon) items
○ Involves calling into Qtenv/Tkenv!

● Self-refreshing figures
○ cFigure::refreshDisplay(), only called if containing canvas is open in the GUI
○ Useful for certain figures, e.g. compound figures implementing plots, gauges, etc.

● Implemented in Qtenv
○ Tkenv only has partial or no support for new features

● Tests
○ better structured, more coverage

9

Core / Simulation Kernel

● Little API changes
○ info() renamed to str(), but old method still exists and delegates to the new one

○ detailedInfo() deprecated due to little raison d’être

● Enhancements:
○ @statistic: source can be a signal of a (direct or indirect) submodule

■ Consequence: @statistic parser moved from envir into the sim. Kernel

○ More items made inspectable in Qtenv/Tkenv:
■ Listeners lists per signal
■ Simulation results being collected (i.e. result recorders added by @statistic)
■ XML-valued module parameters, XML values (cXMLElement trees)

10

End of implemented features.
Plans start here.

11

Support for smooth custom animations

● Goal: add infrastructure for creating arbitrary animations
● Introduced in a separate presentation
● “Proof-of-concept” implementation

exists (part of Tech Preview)

12

Better support for simulation campaigns

● Exploring large parameter space with simulation:
○ Many iteration variables, replications → generates a large number of runs

○ Being able to (re)run a subset of runs is important for incremental execution of parameter
studies

● Improvements in the following areas:
○ Managing simulation runs
○ Result analysis

● Inspired by feedback from Antonio Virdis

13

Run filter

● The run filter (Cmdenv’s -r option) allows selecting a subset of runs for execution
○ Previously, -r only accepted run numbers and run number ranges, like 1,5,8..12

● The -r option has been extended to accept a match expression
○ A plain wildcard expression is matched against the ${iterationvars} string
○ Match expression can also refer to iteration variables,

or a boolean expression formed from them (AND, OR, parentheses)
○ Examples: -r ‘*mean=4.3*’; -r ‘mean(4.3) AND numHosts({10..20})’
○ There are plans to extend/revisit the match expression syntax (also accept var~patt for var(patt), etc.)

14

Run filter, cont’d

● A query (-q) option has also been added
○ -c <configname> -r <runfilter> -q numruns
○ -c <configname> -r <runfilter> -q runs
○ -c <configname> -r <runfilter> -q rundetails

15

Result file naming

● The traditional naming scheme contains the run number, which is not very
convenient
○ <configName>-<runNumber>.{sca|vec}

○ Problems: difficult to identify runs; nightmare when incrementally adding new runs

● Solution: iteration variables as part of default file names
○ Example: SlottedAloha-numHosts=10,mean=0.9-#3.sca
○ Illegal and inconvenient characters encoded in an urlencode-like manner

16

● Repetition used to be the innermost loop
○ Good? Bad?
○ It performs all replications for a data point before going on to the next

● Changed to be the outermost loop
○ Allows one to get early results for all data points, then refines the picture by executing more

runs
○ Analogy: loading a JPEG image: line-by-line vs progressive

● Potential further improvement: specify nesting order explicitly
○ Concept: itervars-nesting-order = repetition,*,numHosts

Nesting order of iterations

17

Revisiting result analysis

● Improving CSV (and other) export
○ Added run attributes (iteration variables, etc) as columns
○ In scavetool as well as the IDE

● SQLite as result file format?
○ To be explored further
○ Co-exist with traditional file format (line-oriented text file)

● Long-term plans to improve the Analysis Tool
○ Usability needs to improve

○ Should assist advanced users transition to programmatic result analysis and plotting, e.g.
using Python or R

18

Workshop Release

OMNeT++ 5.1 Technology Preview

Contains:

● Snapshot of 5.1 development
● Experimental support for smooth custom animation
● Experimental support for SQLite result files

19

Thank you

20

