
Enhancing Visualization and Animation
in Simulation Models

Attila Török, Levente Mészáros, András Varga

OMNeT++ Community Summit 2016, Brno University of Technology (FIT-BUT), Sept 15-16.

Contents

Parts of this presentation:

1. Adding gauges, indicators and plots to INET simulations
2. How simulation visualization is organized in INET
3. Creating smooth custom animations in OMNeT++ (planned for 5.2)

2

Part 1:
Adding gauges, indicators and plots to

INET simulations

3

Motivation

Some use cases:

● Throughput over time
● Utilization
● Number of packet drops

Motivation:

● Quick feedback during simulation
● Demonstration purposes

4

● Instruments are figures, driven by signals

signal Module emits raw data as signals.

statistic @statistic subscribes to signal, and “records” it to a figure.
- Trick: “record=figure” (uses special result recorder)
- Signals of sub, sub-sub- etc. modules may be used as source
- Result filters like sum, mean, average, arithmetic expressions, etc. are

available

figure Instrument figure receives data from the “figure” result recorder, and
updates on next refreshDisplay() call.

- Typically compound figures (subclass from cGroupFigure)
- Implement inet::IIndicatorFigure (contains setData())

Adding Instruments

5

An Example

network WirelessNetwork {
 parameters:

@figure[txPowerIndicator](type=thermometer; pos=700,50; size=50,300);
@statistic[dummy](source=hostA.wlan[0].txPower; record=figure;

 targetFigure=txPowerIndicator);
 submodules:
 hostA: WirelessHost;
 ...
}

6

Available Figure Types 1

Gauge

“Thermometer”

Linear Gauge

Progress Meter

7

Available Figure Types 2

Counter

Indexed Image

Plot

Text/Label

8

Implementing New Instrument Figures

Some advice:

● Subclass from cGroupFigure
● Implement inet::IIndicatorFigure (mandatory, contains setValue())
● Add parts as sub-figures e.g. in constructor
● Add setters/getters for properties, and parse() to allow @figure
● setValue() just stores value
● Update visual appearance in refreshDisplay()
● Copy an existing figure as template :-)

9

Part 2:
How simulation visualization is

organized in INET

10

Part 3:
Creating smooth custom
animations in OMNeT++

11

What do we want to animate?

● Node movement

● Radio transmissions

● Frames on a link

● Packet drops

● Exchange between protocol layers

● Other useful details to inform the user
○ Similar to cEnvir::bubble()

12

● Periodic timer ticks (artificial events) to update node positions, radio signals…

Problems:
○ Not smooth! (tick interval = ?)

○ Different time scales

○ Overhead in Express mode

○ Noise in the logs

● Issues with built-in animations:
○ Not customizable enough

○ Cannot be reproduced from models

Current animation in INET

13

Key ideas

● Animation independent from simulation events

● Interpolate between events by inserting extra frames

● Call refreshDisplay() with intermediate SimTime values for rendering

● First approximation:
○ Fixed framerate (frames/real second)

○ Linear mapping of SimTime to real time (fixed number of frames/simsec)

○ A slider to adjust the speed

14

Refinements

● Problems with linear mapping:
○ Signal propagation and node movement are in different time scales

○ Animation is either boring, or skips over short duration details

● Solution:
○ Different parts of the simulation can request different animation speeds

○ Each cCanvas will take the minimum of all current requests as its own animation speed

● No animation speed requests:
○ Qtenv will run with a tweakable, non-linear mapping of SimTime to animation time

○ Short inter-event intervals will be inflated, and long waits shortened

15

Handling zero-time animations

● Some animations take zero simulation time, like
○ Sending a message over a zero-delay link

○ Methodcalls

○ Other important moments that the model wants to inform the user about

● Solution: “hold” time
○ Event processing (and the progression of SimTime) is paused

○ Animation time continues to pass

○ Using a per-cCanvas timer, so the holds in inner modules can be ignored

○ The maximum of the requested and the current (remaining) time is used

16

Simulation time, animation time

Simulation time:

Animation time:

● Animation time can be thought of as the current play position in a movie

● What the movie looks like is directed by the mapping above

● How the movie is played back is defined by the current run mode

● Playback speed is controlled by a slider on the UI

● Adaptive rendering frame rate based on CPU utilization 17

hold animSpeed change animSpeed changehold

Run modes

● Step: Animate until the next event, then stop
○ As if the movie automatically paused at the end of each cut

● Run: Strives to animate at a target frame rate, e.g. 10-60 FPS
○ Simply plays the movie, balancing CPU usage between animation and simulation

● Fast: No waiting between events, less CPU for animation, holds are ignored
○ Similar to fast-forwarding a video tape

● Express: Simulate as fast as possible, negligible CPU time for animation
○ Just quickly skipping through the movie

18

API

● cCanvas:
○ void setAnimationSpeed(double animationSpeed, const cObject * source);

○ void holdSimulationFor(double animationTimeDelta);

● cEnvir:
○ double getAnimationTime();

○ double getAnimationSpeed();

○ double getRemainingAnimationHoldTime();

19

Cooperation with schedulers

● Should still support custom event scheduling
○ Think of cRealtimeScheduler or hardware in the loop

● Waiting has to be delegated to cScheduler to make this possible
○ So it can resume execution if an event comes in that has to be processed immediately

● For the UI to be responsive, cEnvir::idle() has to be called periodically

● cScheduler can also have control over the current SimTime

● New cScheduler methods:
○ bool wait(int msecs), bool governsSimTime(), SimTime simTimeNow()

● Default implementations are in place for all of them
20

One way to implement animations

● Interesting events are recording their animations into a “screenplay”

● At an appropriate time the visualizer will call a hold

● Then the recorded sequence can be played back
○ Rendering is done in refreshDisplay()

○ Progression using getAnimationTime()

● This is similar to how the embedded animations work

21

Deterministic video recording

● Support for built-in video recording is planned

● Frames are rendered on well defined points in time

● Advantages compared to simple screen capturing:
○ Eliminates the occasional jerks caused by varying system load

○ No need for additional software and configuration

○ Simple “push button” usage

○ Output is easily reproducible and can be fine-tuned

○ The simulation/animation doesn’t have to run in real time with high framerate

22

Status

● Experimental implementation available in
OMNeT++ 5.1 Tech Preview, release planned
for version 5.2

● You can try it now on the Aloha example:
○ Hosts have fixed position, computed radioDelay

○ A parameter to enable/disable setAnimationSpeed

○ Can optionally hold time upon collision

○ Illustrates the protocol much better than before

○ Collisions and slotting are clearly visible

● Porting of INET visualizers will follow
23

Thank You

24

