OMNeT++ Community Summit 2016, Brno University of Technology (FIT-BUT), Sept 15-16.

Enhancing Visualization and Animation
in Simulation Models

Attila Torok, Levente Mészaros, Andras Varga

Contents

Parts of this presentation:

1. Adding gauges, indicators and plots to INET simulations
2. How simulation visualization is organized in INET

3. Creating smooth custom animations in OMNeT++ (planned for 5.2)

Part 1:

Adding gauges, indicators and plots to
INET simulations

Motivation

Some use cases:

e Throughput over time
e Utilization
e Number of packet drops

Motivation:

e Quick feedback during simulation
e Demonstration purposes

-10
60 80 100 120 140
A Piot

Adding Instruments

e Instruments are figures, driven by signals

Signa| Module emits raw data as signals.

&

statistic @statistic subscribes to signal, and “records” it to a figure.
- Trick: “record=figure” (uses special result recorder)
- Signals of sub, sub-sub- etc. modules may be used as source
- Result filters like sum, mean, average, arithmetic expressions, etc. are
@ available

Instrument figure receives data from the “figure” result recorder, and

updates on next refreshDisplay() call.
- Typically compound figures (subclass from cGroupFigure)
- Implement inet::lindicatorFigure (contains setData())

An Example

network WirelessNetwork {
parameters:
@figure[txPowerlIndicator](type=thermometer; pos=700,50; size=50,300);
@statisticldummy](source=hostA.wlan[0].txPower; record=figure;
targetFigure=txPowerlIndicator);

submodules: |
hostA: WirelessHost; WirelessNetwork

visualizer

radioMedium

@

Available Figure Types

“Thermometer”

8.32614

A 2
A Gauge

Gauge

[T T [I | |£ -
0 102030405060708090100

- | Progress Meter

e I |
-10-8-6-4-20 2 4 6 8§10 |
A Linear Gauge » /] 1 __i"j

Linear Gauge Meter

Available Figure Types 2

0[7]8§ (00008

A Counter

[EPSpSS Fpep—_—

Counter

A Piot
! Value=8.32614 (An Indicator Text)

An Indexed Image

Text/Label

Value=8.32614 (An Indicator Label)
Indexed Image

Implementing New Instrument Figures

Some advice:

Subclass from cGroupFigure

Implement inet::IIndicatorFigure (mandatory, contains setvalue ())
Add parts as sub-figures e.g. in constructor

Add setters/getters for properties, and parse () to allow @figure
setValue () just stores value

Update visual appearance in refreshDisplay ()

Copy an existing figure as template :-)

Part 2:

How simulation visualization Is
organized in INET

Part 3:

Creating smooth custom
animations in OMNeT++

What do we want to animate?”?

Node movement

Radio transmissions

Frames on a link

Packet drops

Exchange between protocol layers

Other useful details to inform the user

o Similarto cEnvir: :bubble ()

Current animation in INET

e Periodic timer ticks (artificial events) to update node positions, radio signals...

. ** Event #3085
Problems: -
** Event #309

** Event #318
*

o Not smooth! (tick interval = ?) e
¥* Event #313
¥ Event #315

O Different time scales ** Fyent #3117

030374364278 WirelessC.radioMedium.mediumVisualizer updateCanvas
030374464278 WirelessC.radioMedium.mediumVisualizer updateCanvas
.030374564278 WirelessC.radioMedium.mediumvisualizer on updateCanvas
030374664278 WirelessC.radioMedium.mediumVisualizer on updateCanvas
030374764278 WirelessC.radioMedium.mediumVisualizer on updateCanvas
.030374864278 WirelessC.radioMedium.mediumvisualizer on updateCanvas
030374964278 WirelessC.radioMedium.mediumVisualizer on updateCanvas
030375064278 WirelessC.radioMedium.mediumVisualizer on updateCanvas
A3IA3I75164778 WirelessC. radioMedium. mediumVisualizer on nndateCanvas

~+ —+
PO DD D DDDD

[WirelessB 5
relesst packets received: 0

o Overhead in Express mode

o Noise in the logs

\
\

e Issues with built-in animations:
o Not customizable enough Gk : & 3 5 T

figureHelper

o Cannot be reproduced from models

Key ideas

Animation independent from simulation events
Interpolate between events by inserting extra frames

Call refreshDisplay () with intermediate SimTime values for rendering
First approximation:

o Fixed framerate (frames/real second)

o Linear mapping of SimTime to real time (fixed number of frames/simsec)

o A slider to adjust the speed

Refinements

e Problems with linear mapping:

o Signal propagation and node movement are in different time scales

o Animation is either boring, or skips over short duration details
e Solution:

o Different parts of the simulation can request different animation speeds

o Each cCanvas will take the minimum of all current requests as its own animation speed
e No animation speed requests:

o Qtenv will run with a tweakable, non-linear mapping of SimTime to animation time

o Short inter-event intervals will be inflated, and long waits shortened

Handling zero-time animations

e Some animations take zero simulation time, like

o Sending a message over a zero-delay link

o Methodcalls
o Other important moments that the model wants to inform the user about

e Solution: “hold” time

Event processing (and the progression of SimTime) is paused

Animation time continues to pass

Using a per-cCanvas timer, so the holds in inner modules can be ignored

The maximum of the requested and the current (remaining) time is used

Simulation time, animation time

hold hold animSpeed change] [animSpeed change

JIN

Animation time: n o 0 0 a lﬂlll l«ll lﬂll lﬂll lﬂll ;ll X ;ll lall loll lﬂll]

Simulation time:

Animation time can be thought of as the current play position in a movie
What the movie looks like is directed by the mapping above

How the movie is played back is defined by the current run mode
Playback speed is controlled by a slider on the Ul

Adaptive rendering frame rate based on CPU utilization

Run modes

Step: Animate until the next event, then stop
o As if the movie automatically paused at the end of each cut

Run: Strives to animate at a target frame rate, e.g. 10-60 FPS
o Simply plays the movie, balancing CPU usage between animation and simulation

Fast: No waiting between events, less CPU for animation, holds are ignored
o Similar to fast-forwarding a video tape

Express: Simulate as fast as possible, negligible CPU time for animation

o Just quickly skipping through the movie

API

e cCanvas:

© void setAnimationSpeed (double animationSpeed, const cObject * source) ;

0 void holdSimulationFor (double animationTimeDelta) ;
e cEnvir:

© double getAnimationTime () ;
© double getAnimationSpeed() ;

O double getRemainingAnimationHoldTime () ;

Cooperation with schedulers

Should still support custom event scheduling
o Think of cRealtimeScheduler or hardware in the loop
Waiting has to be delegated to cScheduler to make this possible
o So it can resume execution if an event comes in that has to be processed immediately

For the Ul to be responsive, cEnvir::idle () has to be called periodically
cScheduler can also have control over the current SimTime

New cScheduler methods:
O bool wait(int msecs), bool governsSimTime (), SimTime simTimeNow ()

Default implementations are in place for all of them

One way to implement animations

Interesting events are recording their animations into a “screenplay”
At an appropriate time the visualizer will call a hold

Then the recorded sequence can be played back

o Rendering is donein refreshDisplay ()

o Progression using getAnimationTime ()

This is similar to how the embedded animations work

Deterministic video recording

e Support for built-in video recording is planned
e Frames are rendered on well defined points in time

e Advantages compared to simple screen capturing:

Eliminates the occasional jerks caused by varying system load
No need for additional software and configuration

Simple “push button” usage

Output is easily reproducible and can be fine-tuned

The simulation/animation doesn’t have to run in real time with high framerate

Status

Experimental implementation available in
OMNeT++ 5.1 Tech Preview, release planned
for version 5.2

You can try it now on the Aloha example:
Hosts have fixed position, computed radioDelay
A parameter to enable/disable setAnimationSpeed
Can optionally hold time upon collision
lllustrates the protocol much better than before

Collisions and slotting are clearly visible

e Porting of INET visualizers will follow

inear-nonlin

Animation parar

meters -

ear blending: 100%

Min interval: Max interval:

0.10]

= too |7

[%] [e000 %]
12.9466

RECEIVE

Thank You

