

OMNeT++ Community Summit 2016

An OMNeT++ based Framework for Mobility-aware Routing in Mobile Robotic Networks

Benjamin Sliwa, Christoph Ide and Christian Wietfeld

September 16, 2016

Application of autonomous agents for exploration of hazardous areas

- Application of autonomous agents for exploration of hazardous areas
- High mobility causes frequent changes of the network topology
- Stressed routing protocols and losses of the communication link

Solution approach: using mobility control knowledge for intelligent forwarder selections

- Meta-model for realistic modelling of cooperative agents
- Trajectory prediction for precise position estimation
 - Mobility-aware routing approaches
- Proof of concept evaluation

OLSR: Optimized Link State Routing

Modelling the Mobility Behavior of Autonomous Agents

Three basic Rules for the Behavior of Individual Agents **Travelling in Swarms**

- Potential fields / position-based
- Potential fields / position-based

Cooperative mobility algorithms

Real-world swarming scenarios require multiple mobility algorithms to be executed in parallel \rightarrow Meta-model for mobility

Example Behavior of the Reynolds Mobility Meta-modell

Steering	Weight
Exploration	1
Collision Avoidance	2

- Step 1: Handle the Exploration steering
- Step 2: Handle the Collision Avoidance steering
- Step 3: Compute the total Steering Vector with the assigned weights
- Step 4: Handle the locomotion and limit the movement vector with respect to the physical capabilities of the vehicle

Implementation of a Mobility Algorithm as a Steering

{

}

```
class MobilityAlgorithm : public Steering
public:
  MobilityAlgorithm();
protected:
  SteeringVector update();
};
SteeringVector MobilityAlgorithm::update()
  SteeringVector vector:
  // do fancy stuff
  vector = ...
  return vector;
```

MobilityAlgorithm.h/.cc

```
module MobilityAlgorithm extends Steering
```

parameters:

MobilityAlgorithm.ned

- **.host*.mobilityType = "ReynoldsMobilityModel"
- **.host*.numSteerings = 2
- **.host*.steering[0].typename = "MobilityAlgorithm"
- **.host*.steering[0].weight = 2
- **.host*.steering[1].typename = "AnotherMobilityAlgorithm"
- **.host*.steering[1].weight = 1
- **.host*.locomotion.typename = "UAVLocomotion"

omnetpp.ini

Mobility Prediction

Leveraging Mobility Control Knowledge for Precise Position Predictions

- Iterative method to predict the position at a defined target iteration (here $N_p = 7$)
- Usage of the most precise available mobility information in each step

[3] B. Sliwa, D. Behnke, C. Ide, C. Wietfeld, "B.A.T.Mobile: Leveraging Mobility Control Knowledge for Efficient Routing in Mobile Robotic Networks", *In IEEE GLOBECOM 2016 Workshop on Wireless Networking, Control and Positioning of Unmanned Autonomous Vehicles (Wi-UAV)*, Washington D.C., USA, Dezember 2016, accepted for presentation. [Online]. Available: http://arxiv.org/abs/1607.01223

Accuracy of the Prediction Method

- Steering Vector integration decreases the prediction error
- Waypoints act as static orientation points
- Steering Vector is only beneficial if waypoints are not available

W: Waypoints S: Steering Vector E: Extrapolation GNSS: Global Navigation Satellite System

The prediction stability can highly be increased by integrating waypoint information

Mobility-aware Routing

Predictive Path Planning with Mobility-aware OLSR

- Trade-off: shortest path vs stability
- Choose the shortest path with the highest availability
- Requires mobility information of **all nodes** → high overhead

What is the best path from A to E?

What is the best path from A to E?

- Periodic flooding of routing messages \rightarrow data is received on multiple paths
- Include a measurement for the path quality of the reverse path to the sender

- Periodic flooding of routing messages \rightarrow data is received on multiple paths
- > Include a measurement for the path quality of the reverse path to the sender
- Intermediate nodes update the score with information about the link quality to the forwarder $S_{new} = S_{received} \cdot S_L$
- Link score takes current distance and predicted distance development into account
- Routing decision: choose the forwarder with the best path score to the destination

Implementation in OMNeT++/INETMANET

Proof of Concept Evaluation

Simulation Parameters and Reference Scenario

Simulation parameter	Value
Mission area	500 m x 500 m x 250 m
Number of agents	10
Steering[0] (Exploration)	Controlled Waypoint
Steering[0].weight	1
Steering[1] (Collision Avoidance)	LocationBasedCollAvoidance
Steering[1].weight	10
Steering[1].minDistance	30 m
Locomotion	UAVLocomotion
Mobility update interval Δt_u	$250 \mathrm{ms}$
Movement speed	50 km/h
Channel model	Friis / Nakagami ($\alpha = 2.75$)
Video stream bitrate	2 Mbit/s
Video stream packet size	1460 Byte

- Which approach achieves a higher benefit from mobility-awareness?
- How do the channel conditions influence the routing performance?

CBR: Constant Bitrate

Predictive Path Planning with Mobility-aware OLSR

Predictive Path Planning is only useful in envrionments with low packet loss probabilities

Benjamin Sliwa | An OMNeT++ based Framework for Mobility-aware Routing in Mobile Robotic Networks

Stigmergic approach achieves a high robustness against challenging channel conditions

Conclusion

- Reynolds meta-model for mobility behavior of autonomous agents
 - Steerings implement mobility algorithms
 - Locomotion represents the vehicle class
- Trajectory prediction method
 - Leverages mobility control knowledge
 - Integration of waypoints highly improves prediction accuracy
- Mobility-aware routing approaches
 - Predictive Path Planning is only useful in environments with low packet loss probabilities
 - Stigmergic approach achieves a high robustness against challenging channel conditions

Mobility-aware extension to the INETMANET framework of OMNeT++ https://github.com/BenSliwa/mobilityaware-inetmanet

Outlook

- Integration of further mobility algorithms as steerings
 - Communication-aware mobility
- Provision of additional vehicle classes as locomotion implementations
- Extension of more routing protocols with mobility-aware capabilities
- Real-world protocol evaluation with experimental testbed

Thanks for your attention