

OMNeT++ Community Summit, 2016

An outline of the new IEEE 802.11
model in the INET framework

Brno University of Technology – Czech Republic – September 15-16, 2016 Levente Mészáros

Quick Recap

● The old model was a dead end

● Design draft for a new model was presented at the
OMNeT++ Community Summit 2015 in Zurich

● First version was released in INET-3.1.1, October, 2015

● The old model was replaced in INET-3.2, December, 2015

● Benjámin M. Seregi works on the model ever since

– First design draft has been significantly reworked

Model Goals

● Full-featured and validated model

● Directly implement the standard

– Implementation mirrors the concepts in the Standard
● Modular, pluggable architecture

– Allow experimentation

– Widely configurable

Conceptual Architecture

Mac

Rx

Coordination Function

Tx

ProcedureProcedureProcedure
PolicyPolicyPolicy

QueueQueueQueue

Mac Data Service

ProcessProcessProcess
PolicyPolicyPolicy

Channel Access FunctionChannel Access FunctionChannel Access Function

Frame Sequence

Some Experimentation Options

● New policies can be defined by the user to allow
experimenting with non-standard scenarios

– Custom ACK policy (e.g. for long-range wifi)

– Custom policy for RTS/CTS protection

– Fragmentation/aggregation policy

– Block ACK agreement initiatation/termination policy
● Custom rate selection and new rate control algorithms

● Custom backoff procedure

● New frame sequences

Experimenting with Rate Management

● Rate selection

– Assigns rate based on frame type and receiver

● Rate control

– Determines optimal rates based on channel quality

Contents

Coordination Functions

Channel Access Functions

Procedures

Policies

Mac Data Service

Frame Exchange Sequences

Dynamic Model Behavior

Coordination Functions

● Implemented as compound modules using C++ classes
derived from cModule

– Dcf

– Hcf (Edca only)

● Unimplemented

– Pcf

– Mcf
IEEE 802.11 Mac

Distributed Coordination Function (Dcf)

● Submodules communicate via direct C++ method calls

Hybrid Coordination Function (Hcf)

scary

Contents

Coordination Functions

Channel Access Functions

Procedures

Policies

Mac Data Service

Frame Exchange Sequences

Dynamic Model Behavior

Channel Access Functions

● Implemented as compound modules using C++ classes
derived from cModule

– Dcaf

– Edcaf

Channel Access Function

Backoff Procedure

IDLE

DEFER

IFS BACKOFF

Start &
Busy

Ch-Free
Ch-Busy

Ch-Busy

Start &
!Busy

Backoff-Done

IFS-Done

Enhanced Distributed Channel Access (Edca)

● Edca contains one Edcaf per access category (AC)

● EdcaCollisionController resolves internal
collisions

Contents

Coordination Functions

Channel Access Functions

Procedures

Policies

Mac Data Service

Frame Exchange Sequences

Dynamic Model Behavior

Procedures

● Procedures answer how to do something as opposed to when

● Our procedure implementations directly follow the standard

● Implemented as C++ classes

– Backoff procedure

– Ack procedure

– Rts/Cts procedure

– Block Ack Agreement procedure

– Block Ack procedure

– Recovery procedure

– Protection mechanism

– TxOp procedure

Procedure Example

● Keeps track of frame reception statuses for block ack agreements

● RecipientBlockAckAgreementProcedure contains

map<pair<MACAddress, Tid>, BlockAckAgreement>

● BlockAckAgreement contains

Starting sequence number

Buffer size

Expiration time

BlockAckRecord
● BlockAckRecord contains

pair<SeqNum, FragNum> → Status (arrived or not)

Contents

Coordination Functions

Channel Access Functions

Procedures

Policies

Mac Data Service

Frame Exchange Sequences

Dynamic Model Behavior

Policies

● Policies answer when as opposed to how

● Meant to be easily replaceable with custom versions

● Implemented as simple modules

– Ack policy

– Rts / Cts policy

– Fragmentation policy

– Aggregation policy

– Block ack agreement policy

Policy Example

● OriginatorBlockAckAgreementPolicy determines

– when to initiate a new agreement

– when to terminte an existing agreement
● OriginatorQoSAckPolicy determines

– ack policy subfield for outgoing data frames

NORMAL_ACK, BLOCK_ACK, NO_ACK

– when to send BlockAckReq

Contents

Coordination Functions

Channel Access Functions

Procedures

Policies

Mac Data Service

Frame Exchange Sequences

Dynamic Model Behavior

Coordination Function

Data Flow at the Originator

Frame(s)

Frame(s)

Pending queuePending queuePending queue

In progress framesIn progress framesIn progress frames

Mac Data Service

Process PolicyPolicyPolicyProcessProcess

As Defined in the Standard

Correspondence to the Standard

Implementation

● Implemented as compound modules using C++ classes derived
from cModule

● Contains processes implemented as C++ classes

– Sequence number assignment / Duplicate removal

– Fragmentation / Defragmentation

– Aggregation / Deaggregation

– Block Ack reordering
● Contains policies as submodules

– Fragmentation policy

– Aggregation policy

Originator mac data service

Contents

Coordination Functions

Channel Access Functions

Procedures

Policies

Mac Data Service

Frame Exchange Sequences

Dynamic Model Behavior

Correspondence to the Standard

Hcf Frame Sequence Example

Originator Recipient

RTS

CTS

Data

ACK

Qos Data

BlockAckReq

BlockAck

TxOp

RTS CTS (Data+individual) ACK (Data +QoS +individual +block-ack)
(Data +QoS +individual +block-ack) BlockAckReq BlockAck

Qos Data

Implementation

● Implemented as C++ classes

● Coordination functions have their own frame sequences
directly corresponding to the 802.11 Annex G. (normative)

– DcfFs, PcfFs, HcfFs, and McfFs

● Building blocks

– SequentialFs, OptionalFs,
RepeatingFs, AlternativeFs

– FragFrameFs, AckFs, SelfCtsFs, etc.

Contents

Coordination Functions

Channel Access Functions

Procedures

Policies

Mac Data Service

Frame Exchange Sequences

Dynamic Model Behavior

● Processing the Data Frame at the Originator
– Data Frame Arrived → Backoff Procedure Started

– Backoff Procdedure Finished → Data Frame Extracted

– Data Frame Extracted→ Data Transmission Started

– Data Transmission Finished → Waiting for ACK Started

● Processing the Data Frame at the Recipient
● Processing the ACK Frame at the Originator

Data ACK Frame Sequence Example

Data Frame Arrived → Backoff Procedure Started

Mac Dcf
Pending
Queue

Backoff
ProcedureDcaf

processUpperFrame()
insert()

requestChannel()
startBackoffProcedure()

waiting for backoff procedure to finish

handleMessage()

scheduleAt()

Backoff Procdedure Finished → Data Frame Extracted

Dcaf Dcf
Frame

Sequence
Handler

DcfFs

backoffProcedureFinished()

channelGranted()

startFrameSequence()

prepareStep()

Backoff
Procedure

handleMessage()

extractFramesToTransmit()

MacData
Service

Frag.
Policy

computeFragmentSizes()

Data Frame Extracted→ Data Transmission Started

Dcf Tx
Rate

Selection

transmitFrame()

computeDataFrameMode()

waiting for Data transmission to finish

send()

transmitFrame()

Frame
Sequence
Handler

DcfDcaf
Backoff

Procedure

Data Transmission Finished → Waiting for ACK Started

Frame
Sequence
Handler

DcfFsDcf

completeStep()

prepareStep()

scheduleStartRxTimeout()

waiting for ACK frame to arrive

transmissionComplete()

Tx

receiveSignal()

transmissionComplete()

scheduleAt()

Dcf

Frequently Asked Questions

● When will it be available?

– Needs more work on: validation, logging, visualization
● Is it compatible with the current version?

– It’s meant to be (Ieee80211CompatibleMac)

● What features are implemented?

– New: block ack, MSDU aggregation

– Still missing: Hcca, Pcf, Mcf, MPDU aggregation,
frame lifetime, etc.

● Can I build a simplified MAC?

– Yes (work in progress)

Questions and Answers

Levente Mészáros

Thank you for your kind attention!

Brno University of Technology – Czech Republic – September 15-16, 2016

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

