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Quick Recap

● The old model was a dead end

● Design draft for a new model was presented at the
OMNeT++ Community Summit 2015 in Zurich

● First version was released in INET-3.1.1, October, 2015

● The old model was replaced in INET-3.2, December, 2015

● Benjámin M. Seregi works on the model ever since

– First design draft has been significantly reworked



  

Model Goals

● Full-featured and validated model

● Directly implement the standard

– Implementation mirrors the concepts in the Standard
● Modular, pluggable architecture

– Allow experimentation

– Widely configurable



  

Conceptual Architecture
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Some Experimentation Options

● New policies can be defined by the user to allow 
experimenting with non-standard scenarios

– Custom ACK policy (e.g. for long-range wifi)

– Custom policy for RTS/CTS protection

– Fragmentation/aggregation policy

– Block ACK agreement initiatation/termination policy
● Custom rate selection and new rate control algorithms

● Custom backoff procedure

● New frame sequences



  

Experimenting with Rate Management

● Rate selection

– Assigns rate based on frame type and receiver

● Rate control

– Determines optimal rates based on channel quality
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Coordination Functions

● Implemented as compound modules using C++ classes 
derived from cModule

– Dcf

– Hcf (Edca only)

● Unimplemented

– Pcf

– Mcf
IEEE 802.11 Mac



  

Distributed Coordination Function (Dcf)

● Submodules communicate via direct C++ method calls



  

Hybrid Coordination Function (Hcf)

scary
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Channel Access Functions

● Implemented as compound modules using C++ classes 
derived from cModule

– Dcaf

– Edcaf

Channel Access Function



  

Backoff Procedure
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Enhanced Distributed Channel Access (Edca)

● Edca contains one Edcaf per access category (AC)

● EdcaCollisionController resolves internal 
collisions



  

Contents

Coordination Functions

Channel Access Functions

Procedures

Policies

Mac Data Service

Frame Exchange Sequences

Dynamic Model Behavior



  

Procedures

● Procedures answer how to do something as opposed to when

● Our procedure implementations directly follow the standard

● Implemented as C++ classes

– Backoff procedure

– Ack procedure

– Rts/Cts procedure

– Block Ack Agreement procedure

– Block Ack procedure

– Recovery procedure

– Protection mechanism

– TxOp procedure



  

Procedure Example

● Keeps track of frame reception statuses for block ack agreements

● RecipientBlockAckAgreementProcedure contains

map<pair<MACAddress, Tid>, BlockAckAgreement>

● BlockAckAgreement contains

Starting sequence number

Buffer size

Expiration time

BlockAckRecord
● BlockAckRecord contains

pair<SeqNum, FragNum> → Status (arrived or not)
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Policies

● Policies answer when as opposed to how

● Meant to be easily replaceable with custom versions

● Implemented as simple modules

– Ack policy

– Rts / Cts policy

– Fragmentation policy

– Aggregation policy

– Block ack agreement policy



  

Policy Example

● OriginatorBlockAckAgreementPolicy determines

– when to initiate a new agreement

– when to terminte an existing agreement
● OriginatorQoSAckPolicy determines

– ack policy subfield for outgoing data frames

NORMAL_ACK, BLOCK_ACK, NO_ACK

– when to send BlockAckReq
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Coordination Function

Data Flow at the Originator
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As Defined in the Standard



  

Correspondence to the Standard



  

Implementation

● Implemented as compound modules using C++ classes derived 
from cModule

● Contains processes implemented as C++ classes

– Sequence number assignment / Duplicate removal

– Fragmentation / Defragmentation

– Aggregation / Deaggregation

– Block Ack reordering
● Contains policies as submodules

– Fragmentation policy

– Aggregation policy

Originator mac data service
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Correspondence to the Standard



  

Hcf Frame Sequence Example

Originator Recipient

RTS

CTS

Data

ACK

Qos Data

BlockAckReq

BlockAck

TxOp

RTS CTS (Data+individual) ACK (Data +QoS +individual +block-ack)
(Data +QoS +individual +block-ack) BlockAckReq BlockAck

Qos Data



  

Implementation

● Implemented as C++ classes

● Coordination functions have their own frame sequences 
directly corresponding to the 802.11 Annex G. (normative)

– DcfFs, PcfFs, HcfFs, and McfFs

● Building blocks

– SequentialFs, OptionalFs,
RepeatingFs, AlternativeFs

– FragFrameFs, AckFs, SelfCtsFs, etc.
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● Processing the Data Frame at the Originator
– Data Frame Arrived → Backoff Procedure Started

– Backoff Procdedure Finished → Data Frame Extracted

– Data Frame Extracted→ Data Transmission Started

– Data Transmission Finished → Waiting for ACK Started

● Processing the Data Frame at the Recipient
● Processing the ACK Frame at the Originator

Data ACK Frame Sequence Example



  

Data Frame Arrived → Backoff Procedure Started

Mac Dcf
Pending
Queue

Backoff
ProcedureDcaf

processUpperFrame()
insert()

requestChannel()
startBackoffProcedure()

waiting for backoff procedure to finish

handleMessage()

scheduleAt()



  

Backoff Procdedure Finished → Data Frame Extracted

Dcaf Dcf
Frame

Sequence
Handler

DcfFs

backoffProcedureFinished()

channelGranted()

startFrameSequence()

prepareStep()

Backoff
Procedure

handleMessage()

extractFramesToTransmit()

MacData
Service

Frag.
Policy

computeFragmentSizes()



  

Data Frame Extracted→ Data Transmission Started

Dcf Tx
Rate

Selection

transmitFrame()

computeDataFrameMode()

waiting for Data transmission to finish

send()

transmitFrame()

Frame
Sequence
Handler

DcfDcaf
Backoff

Procedure



  

Data Transmission Finished → Waiting for ACK Started

Frame
Sequence
Handler

DcfFsDcf

completeStep()

prepareStep()

scheduleStartRxTimeout()

waiting for ACK frame to arrive

transmissionComplete()

Tx

receiveSignal()

transmissionComplete()

scheduleAt()

Dcf



  

Frequently Asked Questions

● When will it be available?

– Needs more work on: validation, logging, visualization
● Is it compatible with the current version?

– It’s meant to be (Ieee80211CompatibleMac)

● What features are implemented?

– New: block ack, MSDU aggregation

– Still missing: Hcca, Pcf, Mcf, MPDU aggregation, 
frame lifetime, etc.

● Can I build a simplified MAC?

– Yes (work in progress)



  

Questions and Answers

Levente Mészáros

Thank you for your kind attention!

Brno University of Technology – Czech Republic – September 15-16, 2016
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