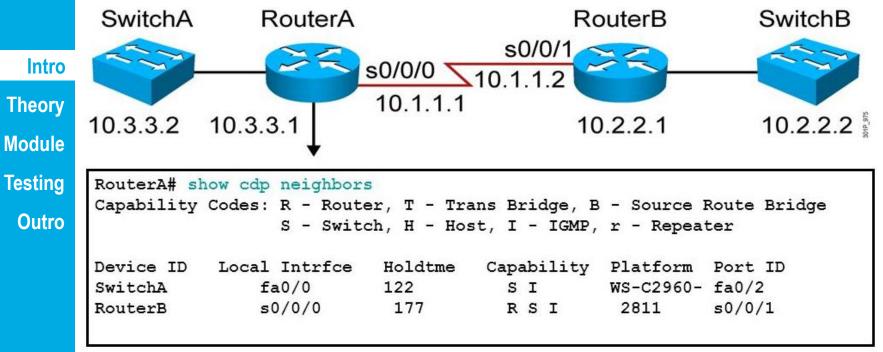


Intro Theory Module Testing Outro

DISCOVERING NEIGHBORING DEVICES IN NETWORK: DEVELOPMENT OF CDP AND LLDP SIMULATION MODULES FOR OMNET++


Vladimír VESELÝ, Tomáš Rajca

4TH OMNET++ COMMUNITY SUMMIT 7TH-8TH SEPTEMBER 2017, BREMEN, CZECH REPUBLIC

MOTIVATION

Layer2 discovery protocols are priceless for network monitoring, maintenance, and troubleshooting

http://slideplayer.com/slide/7077492/24/images/7/USING+THE+SHOW+CDP+NEIGHBORS+COMMAND.jpg

However, they start to play an important role in the operation of VoIP infrastructure, data-centers and other high-availability networks.

CDP AND LLDP

- Layer 2 discovery protocols have been developed to share information between directly connected devices.
 - They send specific device's information (e.g., device role, interface state, assigned IP address, operating system version, Power over Ethernet capability, duplexness, VLAN configuration, etc.) to neighbors.
- Periodical generation of messages

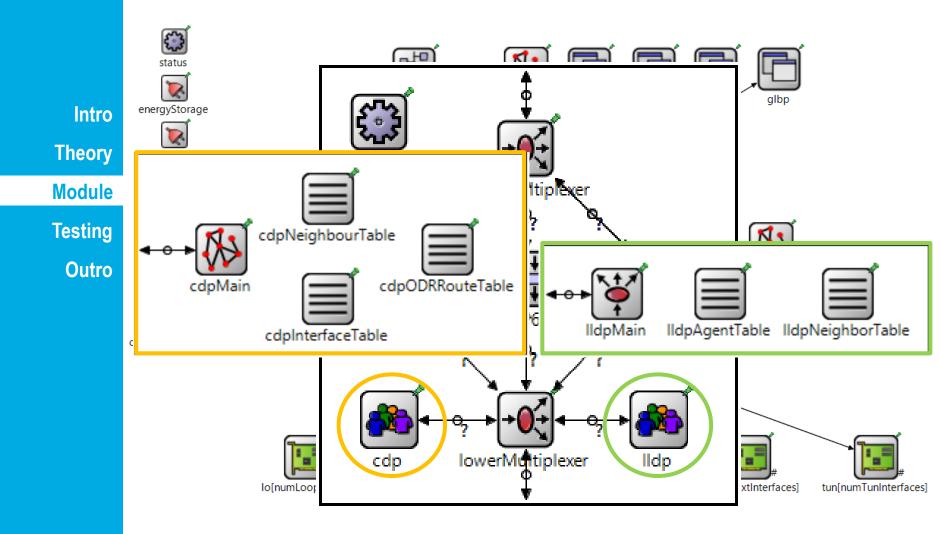
Cisco Discovery Protocol

- the very first member of this protocol family
- dedicated MAC address 01-00-0c-cc-cc-cc

Link Layer Discovery Protocol

- codified in IEEE standard 802.1AB
- de facto industry standard for multi-vendor environment
- dedicated MAC address 01-80-c2-00-00-0e

Intro Theory Module


Testing Outro

	MESSAGES		Cdp					
IVIE35AGE5		GE3	No. Time Source Destination Protocol					
			24 1 c4:04:08:88:f1:01 CDP/VTP/DTP/PAgP CDP					
	Type – Length -		57 4 ca:01:07:7b:00:08 CDP/VTP/DTP/PAgP CDP					
_			110 9 ca:01:07:7b:00:08 CDP/VTP/DTP/PAgP CDP					
			<					
	CDP TLV	000 (1	> Frame 57: 350 bytes on wire (2800 bits), 350 bytes					
	Version	CDP protocol						
		Unique ide						
		der Information i	> Logical-Link Control					
Intro	Time To Live	Information is For CDP, reco	\vee [16C0]][COVARV PROTOCOL					
			Version: 2					
Theory	Checksum	Message con	TTL: 180 seconds					
Module	Address	TLV contain	Checksum: 0x9ace [correct]					
		0 10	[Checksum Status: Good]					
Tradition	Capabilities	Specifies (Devides TD, D1					
Testing	Port-Id	String repres	Type: Device ID (0x0001)					
Outro		The label is	Length: 6					
ouno			Device ID: R1					
	Full/Half Duplex	Duplexness o	Coffeena Vanatan					
		mismatch bet						
	Native VLAN	TLV hosts cor						
		be used to de	✓ Addresses					
	Device-Id Location		Type: Addresses (0x0002) Length: 17 Number of addresses: 1					
	Platform							
	Software Version	Device's ope						
	VTP Management	VLAN manage	> IP address: 192.168.1.1					
	Domain	protocol called						
		On-demand ro	FOLL ID. FASILINELNELO/0					
	IP Network Prefix	TLV carries a	> Capabilities					
			> Duplex: Full					

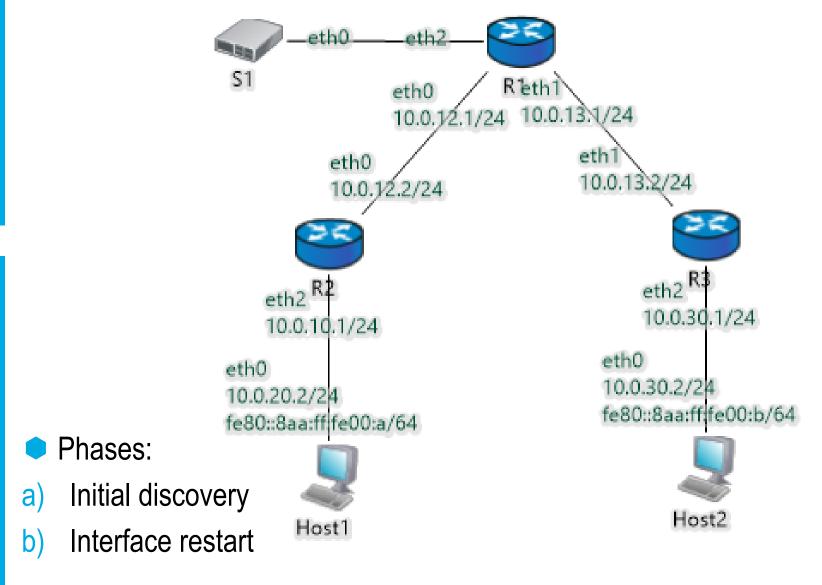
IMPLEMENTATION

ANSARouter and ANSASwitch combine all our functionality

Intro

Theory

Module


Testing

Outro

6

Scenario

Comparing real and simulated network

77

A) INITIAL DISCOVERY

Direction	CD	Ρ	LLDP	
Direction	Simul. [s]	Real [s]	Simul. [s]	Real [s]
$R1 \rightarrow R2$	0.000	0.300	0.000	1.600
$R2 \rightarrow R1$	0.000	5.370	0.000	1.900
$R1 \rightarrow R2$	1.000	1.300	1.000	missing
$R2 \rightarrow R1$	1.000	6.370	1.000	missing
$R1 \rightarrow R2$	2.000	2.310	2.000	missing
$R2 \rightarrow R1$	2.000	7.380	2.000	missing
$R1 \rightarrow R2$	62.000	57.550	62.000	61.300
$R2 \rightarrow R1$	62.000	66.850	62.000	61.400

Intro Theory Module Testing Outro

- Both protocol offer fast-start feature, which speeds up the process of neighbor discovery. During the fast-start, periodic message generation interval is just 1 second. Fast-start lasts for:
 - a) three consecutive message updates in case of CDP;
 - b) one to eight (by default three) consecutive message updates in case of LLDP.
- Fast-starts happens each time when:
 - a) interface restarts in case of CDP;
 - b) MIB content changes in case of LLDP standard;
 - c) a new end-host is detected, or LLDP-MED TLV is exchanged in case of LLDP implementation by Cisco

7

B) INTERFACE RESTART

- This test tracks events bound to the flapping of interface between R1 and R2.
- After the link goes down at t = 50s, records expire from tables at t = 180s. Then at t = 200s connection is reestablished and CDP/LLDP messages are first to appear on the wire.

Direction	CD	Ρ	LLDP	
Direction	Simul. [s]	Real [s]	Simul. [s]	Real [s]
$R1 \rightarrow R2$	200.000	199.480	200.000	202.000
$R2 \rightarrow R1$	200.000	201.500	200.000	205.000
$R1 \rightarrow R2$	201.000	200.500	201.000	missing
$R2 \rightarrow R1$	201.000	202.510	201.000	missing
$R1 \rightarrow R2$	202.000	201.510	202.000	missing
$R2 \rightarrow R1$	202.000	203.510	202.000	missing

Intro Theory Module Testing

Outro

Intro

Theory

Module

Testing

Outro

SUMMARY

Our paper describes a finalized code contribution involving CDP and LLDP simulation modules

ANSAINET extends INET with a new L3, L4 sim. modules

also added during the previous year HSRP, GLBP

for the next year we are finishing OSPFv3 and refactoring of IPv6 stuff in OMNeT++

belongs to

Czech Republic. It is dedicated to the development a variety of information recinition provided with RFC specifications or referential implementations, which extend wired IP network framework INET (thus, the source code is called ANSAINET). Subsequently, these modules and related tools could (one day) allow formal analysis of real networks and their configurations. ANSAINET may be publicly used as the routing/switching baseline for further research initiatives, i.e., in simulations proving (or disproving) certain aspects of networking technologies (e.g., finding bottlenecks and single-point of failures, configuration errors, faulty network states, etc.).

THANK YOU FOR YOUR ATTENTION! QUESTIONS?

Reviewers:

- 1) After the first discovery between R1 and R2 is completed: was any background traffic considered to come in after the link discovery which would affect the delivery of the follow-up discovery messages?
- 2) Are the LLDP packets missing in any test run or only in the worst case?
- 3) The test was performed on a small scenario. Were further tests also run on larger scenarios? (in other words, are they any effects which have to be considered in the implementation when considering scalability)?
- 4) Does the proposed implementation scale to large networks? What's the impact on the simulation performance in this case?
- 5) In addition, I am missing a discussion on DCBX, which is an enhancement on top of LLDP that enables datacenter bridging extensions such as PFC, ETS, and QCN.
- 6) There is also some concern that this framework is limited to ANSAINET, which would limit its usefulness for people that are using plain INET.

Intro Theory Module Testing Outro