OPS – An Opportunistic Networking Protocol Simulator for OMNeT++

Asanga Udugama, Anna Förster, Jens Dede, Vishnupriya Kuppusamy and Anas bin Muslim

University of Bremen, Germany

OMNeT++ Community Summit 2017

University of Bremen, Bremen, Germany

September 07 – 08, 2017

Contents

- Motivation
- Opportunistic Networks
- Opportunistic Networking Protocol Simulator (OPS)
- Evaluations
- Summary and Future Work

Motivation

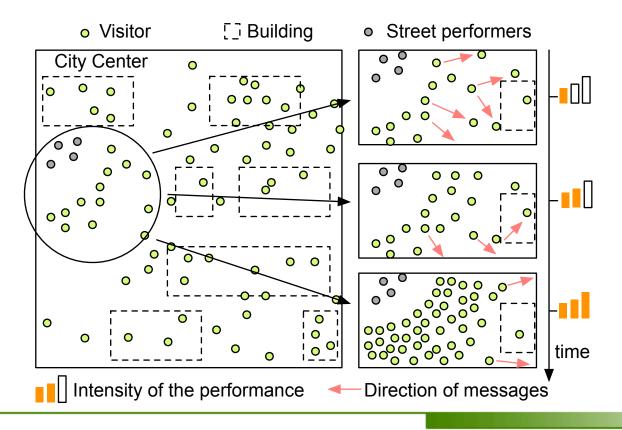
Motivation

- Internet of Things (IoT)
 - Over 50 billion devices by 2020 [1]
- Architecture for communications in the IoT
 - Opportunistic Networking
- IoT Scenarios
 - Social networking to emergencies
 - Nature of applications higher value of information in locality
- Importance of information propagation
 - Forwarding protocols Epidemic Routing, ODD, etc.
- Necessity for large-scale evaluations
 - Require simulators OMNeT++

Opportunistic Networks (OppNets)

Characteristics of OppNets

- Information dissemination
 - Interested parties wanting information
 - Value of information higher around the source
- Store-and-Forward architecture
 - Communicate when there is an opportunity to communicate
 - Delayed delivery of information
- Use of peer-to-peer communication technologies
 - E.g., Bluetooth, IEEE 802.15.4
- Importance of the information propagation
 - Capabilities of the forwarding protocol



OppNets Use-case

- Propagation of information about an event
 - Street performers

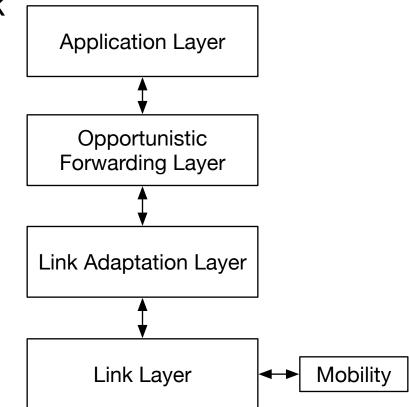
versität Bremen

Interested people gather (flash crowd)

Opportunistic Networking Protocol Simulator (OPS)

Objectives

- Pluggable protocol layer architecture
 - Node model can handle new protocol implementations
 - Clear interface between layers
- Large-scale simulations
 - IoT-scale devices
- Mobility
 - Synthetic, trace-based and hybrid



Protocol Stack

- Node model 4 layer protocol stack
- Protocol layers

ersität Bremen

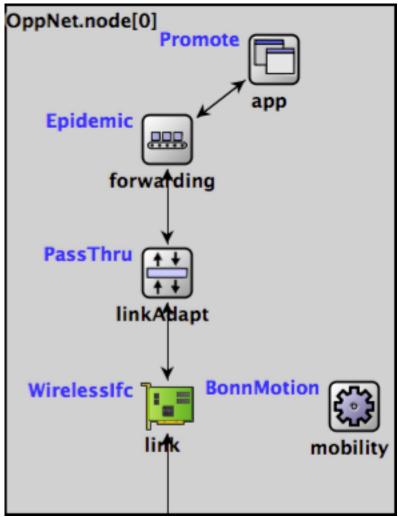
- Application layer Data generators
- Forwarding layer Data propagation mechanisms
- Link Adaptation layer Conversions to different link technologies
- Link layer Link technology coupled with mobility

Models

Application layer

- Promote Generates random data as constant traffic, uniformly distributed traffic or exponentially distributed traffic
- Herald Generates pre-determined set of data where nodes assigned "likeness" value to data
- Opportunistic forwarding layer
 - Caching data Employs store-and-forward
 - Neighborhood communications Communications with the changing neighborhood
 - Epidemic Routing Nodes negotiate and exchange data [2]
 - Organic Data Dissemination (ODD) Dissemination of data based on popularity of data [3]
 - Randomized Rumor Spreading (RRS) Random dissemination of data

Models ...contd


- Link adaptation layer
 - PassThru Simple packet traversal
- Link layer
 - WirelessInterface Simple wireless interface that models bandwidth, delays, wireless range (with UDG) and queuing
- Interfaces
 - Use of an extensible packet format

Node Model Implementation

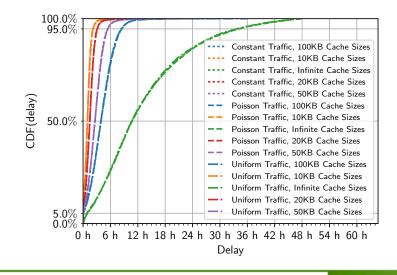
- An example node model used in an experiment
- Use of trace based mobility
 - BonnMotion Cartesian trace of an actual GPS trace SFO Taxi trace
 [4]

Evaluation Metrics

- Focus of performance evaluations is slightly different compared to classical networks
- Data related metrics
 - Liked Data Preferred data received
 - Non-liked Data Not preferred but still received
 - Traffic Spread How well is packet traffic spread in the network
 - Data Delivery Ratio Delivery ratio of destined data
 - Delivery Time Delivery time of destined data
- Mobility related metrics
 - Average Contact Time Duration of a contact
 - Number of Contacts Number of times in contact

Evaluations

Evaluation Scenario


- OPS is being used extensively in our research
 - Results of some evaluations
 - Used in an IEEE Survey on OppNets [5]
- General scenario details
 - Nodes 50-node network
 - Mobility SFO Taxi Trace [4]
 - Data generation 2 hour interval
 - Run for 24 days

ersität Bremen

Influence of Traffic Models & Caching

- Scenario specific parameters
 - Different traffic generation models and different cache sizes
 - Evaluation of data delivery times
- Analysis
 - Traffic generation model has no influence
 - But, caching policy influences delay

Performance of Mobility Models

Scenario specific parameters

- 3 different mobility models (synthetic, trace-based and hybrid)
- Models parameterized as closely as possible to trace-based model
- Analysis
 - Trace-based takes the longest time (but realistic)
 - Closest performance is given by the hybrid model (SWIM)

Model	RWP	SWIM	Bonn Motion
Simulation Time	4 min	59 min	109 min
Memory used	74 MB	86 MB	127 MB
Average Delivery Rate	3 %	96%	92 %
Average Delivery Delay	20.6 h	16.25 h	13.16 h
Total Number of Contacts	190	46,752	155,757
Average Contact Duration	117.14 sec	150.12 sec	584.39 sec

Verification of the Models

- Survey compared OPS with 3 other OppNets implementations
 - ONE [6], Adyton [7] and ns-3
- Analysis
 - OPS provides a comparatively close performance (in metrics listed above)

Summary and Future Work

Summary

- OPS OMNeT++ based modular simulator to evaluate the performance of OppNets
- Node model architecture with pluggable protocol layers
- OppNets focused evaluation metrics
- Available at Github
 - <u>https://github.com/ComNets-Bremen/OPS</u>

Future Work

- Constant improvements, additions to OPS
- Current projects
 - Forwarding protocols (e.g. Spray and Wait)
 - Applications
 - User behavior models
 - Mobility models

References

References

[1] D. Evans, Cisco, **The Internet of Things: How the Next Evolution of the Internet Is Changing Everything**, April 2011

[2] A. Vahdat and D. Becker, **Epidemic Routing for Partially-Connected Ad Hoc Networks**, Technical Report, June 2000

[3] A. Förster et al, **A Novel Data Dissemination Model for Organic Data Flows**, MONAMI 2015, September 2015, Santander Spain

[4] Michal Piorkowski at al, **CRAWDAD dataset epfl/mobility** (v. 20090224), downloaded from http://crawdad.org/epfl/mobility/20090224, https://doi. org/10.15783/C7J010, February 2009

[5] J. Dede et al, **Simulating Opportunistic Networks: Survey and Future Directions**, IEEE Communications Surveys and Tutorials, Accepted for publication in 2017

[6] A. Keránen et al, **The ONE Simulator for DTN Protocol Evaluation**, SIMUTools 2009, March 2 - 6, 2009, Rome, Italy

[7] N. Papanikos et al, **Adyton: A network simulator for opportunistic networks**, [Online]. Available: https://github.com/npapanik/Adyton, 2015

Thank You.

Questions?

