

Evaluating the Utility of UDG Using OMNeT++

Liu Sang¹, Vishnupriya Kuppusamy², Anna Förster², Asanga Udugama², Ju Liu¹

¹Shandong University, China ²University of Bremen, Germany

OMNeT++ Community Summit 2017 University of Bremen, Bremen, Germany September 07 – 08, 2017

Outline

- Background
- Motivation
- Implementation
 - Data Collection
 - Trace based Mobility Model
 - UDG Model
- Simulation Results
- Conclusion

Background

Opportunistic Networks

Opportunistic Network

Contact Time Traces???

Motivation

Mobility Model 🔶 Connectivity Model

Contact Time Traces

- Trace Based Mobility Model
 - More realistic | GPS based
- UDG Connectivity Model
 - Simplest
 - Used by simulators (ONE, Adyton)

Is UDG model realistic???

UDG: Unit Disk Graph

Main Idea

Universität Bremen

Data Collection

- SHANDONG UNIVERSITY
- Android Application: BluetoothContacts*
 - 22 users, 6 weeks
- GPS file
 - GPS coordinates | Interval 10 mins
 - Gauss Krüger map projection
 - Convert: Cartesian coordinates
- BLE file

niversität Bremen

- Received beacons | Interval 22 secs (unfixed)
- Threshold = 90 secs
- Convert: Contact times

*BluetoothContacts: developed by Jens Dede and Sarmad Ghafoor, ComNets, Uni-Bremen, Germany. https://play.google.com/store/apps/details?id=de.uni_ bremen.comnets.BluetoothContacts,

Trace based Mobility Model

TraceBasedMobility Model Inheritance Diagram in INET

setInitialPosition() override;

** INET framework is the library in OMNeT++ that includes all the protocols from physical layer to application layer.

iversität Bremen

1. 4. 1.

UDG Model

versität Bremen

- Users contact within wireless range
- Only depend on wireless range

Scenario Setting

- Network: 5 users, 1 weeks.
- Colleagues
- Every day lunch time for 2 hours;
- Saturday/Sunday no work

Parameters	Purpose	Value
numHosts	The number of users in network	5
wirelessRange	Maximum wireless range for obtaining	selected between 1
	contact times	and 120 meters
neighbourScanInterval	Time interval used to check the update	90 seconds
	of neighbours	
nodeId	The ID of user, -1 represents automat-	-1
	ically obtaining user ID	
mobilityType	The type of mobility model	traceBasedMobility
is3D	The coordinates are 3 dimension	false
traceFile	The name of trace file	CartesianTraces.txt

Table 1. Network Parameters

Neighbour Availability Situations

Fig. 2 Four Different Neighbour Availability Situations between Two Users - based on BLE and Simulations (with GPS Traces)

Universität Bremen

Absolute Difference of Contact Times

 $AbsD = \frac{1}{NK} \sum_{i=1}^{N} \sum_{j=1}^{K} \frac{|T_{S_{ij}} - T_{B_{ij}}|}{T_{ij}}$

1901

- N users
- K parts of simulation
- Ts contact time of sim
- T_B contact time of BLE
- T simulation time

Fig. 3 Absolute Difference of Contact Times against Wireless Range.

Average Contact Times per Hour

Fig. 4 Average Contact Times per Hour against Wireless Range.

Universität Bremen

Histogram of Contact Times

versität Bremen

Fig. 5 Histogram of Contact Times. (Range = 20 m, 30 m and 40 m)

comnets

Conclusion

- Contact times from simulation based on UDG model follow the same pattern as contact times from Bluetooth traces.
- UDG should be effective as a connectivity model and thus, is suitable to extract contact times from GPS traces in simulations.

Thank you

