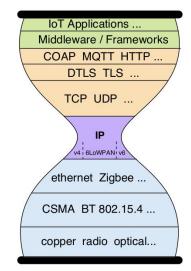
Towards Evaluating Named Data Networking for the IoT: A Framework for OMNeT++

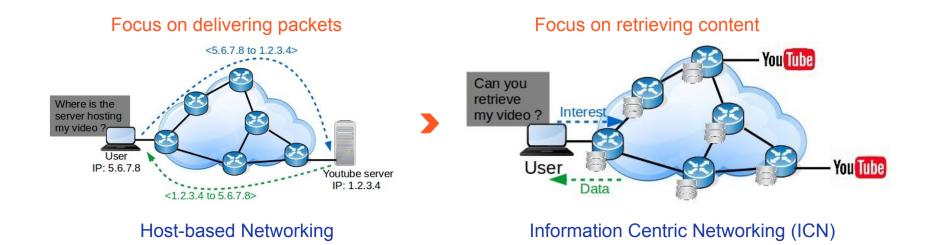
Amar Abane¹², Paul Muhlethaler³, Samia Bouzefrane¹, Mehammed Daoui², and Abdella Battou⁴

¹ Conservatoire National des Arts et Métiers - Paris, France
 ² University Mouloud Mammeri - Tizi-Ouzou, Algeria
 ³ Inria - Paris, France
 ⁴ National Institute of Standards and Technology - MD, USA

Pisa - Italy - September 05-07 2018



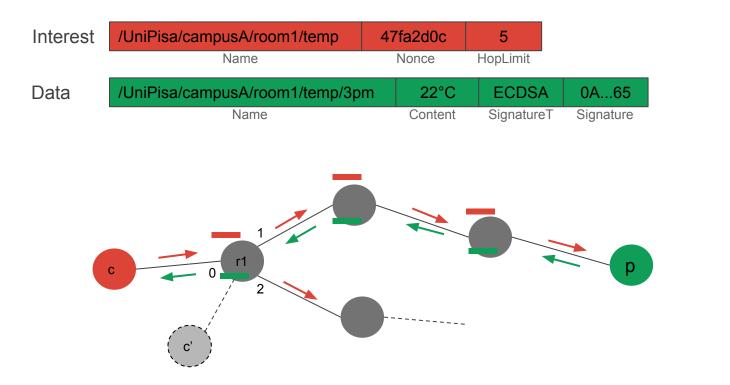
- 1. Named Data Networking & IoT
- 2. NDN-OMNeT design
- 3. Use case example


Named Data Networking & IoT

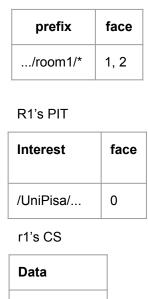
Current IP stack

- Most apps are content-based (e.g. facebook, youtube, skype, etc.)
- DNS, P2P, CDN to support content-based applications
- The applications view DNS names as their namespace
- The network layer views IP addresses as its namespace
- Need name resolution
- Need middleware

Paradigm shift



Named Data Networking


- *Hierarchical* names (e.g. /UniPisa/campusA/room1/temperature)
- Packet routing/forwarding directly on names
- Two packet types: Interest & Data
- Content, name and producer bind with crypto-signature

Interest	Data	
Name	Name	
Request parameters	Content	
	Security info. &	
	Signature	

NDN communication

r1's FIB

/UniPisa/...

Opportunity for the IoT

NDN provides a native support for IoT

- Security Secure IoT data directly.
- Mechanism Mobility support, asynchrone, natural names (close to CoAP)

• Lightness

Implementations (e.g. NDN-RIOT) show that NDN can be lighter than 6LoWPAN on IoT devices.

• Projects

NDN Building Automation System, Home automation, etc.

NDN for low-end IoT: challenges

Considering a low rate/power wireless technology (e.g. IEEE 802.15.4)

Wireless forwarding

Native NDN (over L2), reduced overhead, feasibility with current IoT devices.

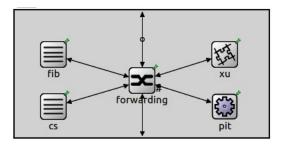
Constrained devices Packet processing/size (small M^{*})

• Naming Name size/processing & semantics, FIB management, etc.

• Device management

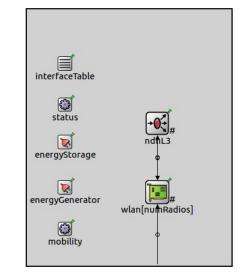
Trust model, bootstrapping, service discovery.

Evaluating NDN-IoT solutions

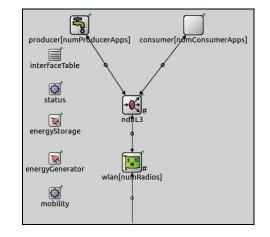

ndnSIM (ns-3) is widely used, but...

- Visualization For understanding and teaching purposes
- Not only networking Need to evaluate memory consumption, etc.
- Quick simulations Need to test features with minimal coding
- OMNeT++/INET Simulate system/network interactions, NDN data structures, etc.

NDN-OMNeT design


NDN core

- NDN as an L3 protocol (*NdnL3*)
- Based on INET 3.5
- Compound module that includes
 - Pending Interest Table (*IPit*, *PitBase*)
 - Forwarding Information Base (IFib, FibBase)
 - Content Store (ICs, CsBase)
 - eXperimental Unit (IXu)
 - Forwarding strategy (IForwarding, IForwardingBase)
- Communication by module access or messages


Hosts

- A typical wireless IoT device (*NdnWirelessHostBase*)
 - Basic NDN host
 - Includes NDN core as a network layer
 - Ready to act as relay node
- A typical IoT end-device (*NdnWirelessHost*)
 - Extension of the basic NDN host
 - Consumer and/or producer apps
 - Ready to act as end-device (e.g. sensor)

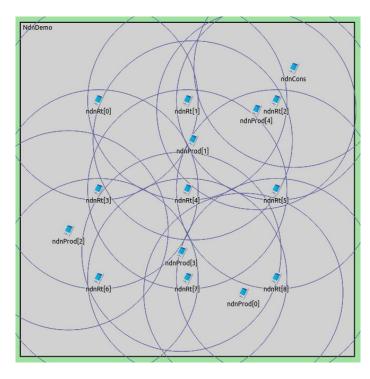
Applications

- Consumer app (ConsumerAppBase)
 - Sends Interests under a given prefix
 - Parameters: prefix, #Interests, lifetime, sendInterval, length, etc.
- Producer app (ProducerAppBase)
 - Responds to incoming Interests with a Data packet under a given prefix
 - Parameters: prefix, length, freshness, etc.

Packets

- NDN uses TLV packet representation
- NDN-OMNeT supports
 - Straightforward packet definition (i.e. extension of cPacket)
 - TLV representation and size computation (for packet processing evaluations)
 - Non-NDN fields are used for evaluation purposes

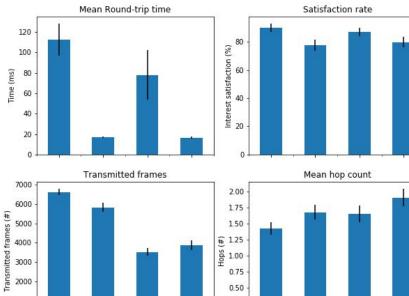
Use case example


NDN wireless forwarding

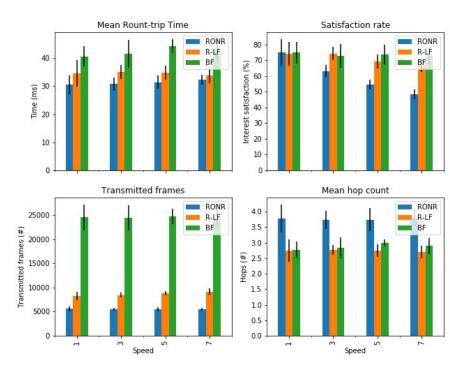
Basic approach (related work)

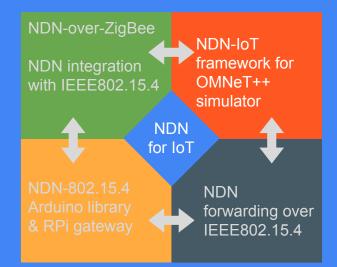
- First Interest is broadcasted (flooding)
- Nodes keep/update temporary FIB entry after getting Data
 - \circ ~ In the FIB: NDN prefixes mapped to MAC addresses
- Flooding triggered by consumer after Interest timeout
- Delayed retransmissions
 - To reduce useless broadcasts
 - If a node overhears packet with the same prefix, the delayed reTx is canceled
- Different NDN-to-MAC mapping: (parameter in Forwarding module)
 - IUDU: Interest Unicast Data Unicast
 - IBDB: Interest Broadcast Data Broadcast
 - IBDU: Interest Broadcast Data Unicast
 - IUDB: Interest Unicast Data Broadcast

Simulation


Topology

Metric


- Collisions number
- Satisfaction rate
- Interest-Data RTT
- Total transmitted frames
- PIT size/lookups
- ...



Conclusion & Future work

NDN-OMNeT	 Extend OMNeT with ICN paradigm A tool for evaluating NDN-IoT solutions
Forwarding	 Other strategies already included Need a fully-customizable forwarding module
Future features	 Support NDN TLV packet processing Memory/processing models for NDN data structures
Compatibility	 Deal with OMNeT/INET versions Other integration/compatibility suggestions

This work is part of: A realistic NDN integration in the IoT

Thank you!

Repo:

https://github.com/amar-ox/NDNOMNeT

Contact:

amar.abane@inria.fr