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Abstract

The hierarchical token bucket (HTB) algorithm allows to specify per-flow bitrate guar-
antees and enables excess bandwidth sharing between flows of the same class. Addition-
ally, it provides capabilities to prioritize the traffic of specific flows, potentially considering
their delay demands. HTB hence constitutes a powerful mechanism to enforce QoS re-
quirements hierarchically and on a fine granular per-flow level, making it an appropriate
choice in numerous use-cases. In this paper, we present HTBQueue, our implementation
of a compound module for HTB support in the discrete event simulator OMNeT++. We
validate HTBQueue’s functionality in terms of rate conformance and fair bandwidth shar-
ing behavior between competing flows. We furthermore demonstrate its support for flow
prioritization.

1 Introduction

The Hierarchical Token Bucket (HTB) algorithm is one of the most widely used mechanisms
for rate limiting. Implemented in the Linux traffic control tool tc, it is used for network control
in testbed setups for research experiments [1, 2, 3] or in general to enforce per-flow Quality of
Service (QoS) policies [4, 5, 6]. HTB allows to classify various types of traffic into different
queues, according to properties such as the service type or IP address. The different queues
into which traffic is classified can be configured with a priority level and a rate limit, allowing
to schedule the packets and shape the traffic accordingly. HTB relies on two token buckets for
controlling the bandwidth usage of a link. The tokens are generated with the desired per-flow
rate and packets can only be dequeued if enough tokens are available in the bucket. The unique
feature of HTB is the bandwidth sharing mechanism. A flow which does not fully exploit its
assured rate consequently does not consume all of its available tokens. These excess tokens
(representing the excess bandwidth) can be borrowed by other flows sharing the same parent in
the HTB structure. The amount of bandwidth a flow can borrow is limited by its ceiling rate.

Although the concept of HTB and its features of setting assured and ceiling rate are rela-
tively old, the same mechanisms are still proposed in modern networking architectures. The
3GPP [7] standard for the Next Generation Radio Access Network (NG-RAN) in 5G defines
a guaranteed bitrate (GBR) as well as a maximum bitrate (MBR) for each flow. While the
C++ based discrete event simulator OMNeT++ [8] implements a generic module for token
buckets1, a module providing the full capabilities of HTB, including per-flow assured and ceil-
ing rate, is still missing. In this paper, we propose a ready-to-use OMNeT++ module2 for the

*Marcin Bosk and Marija Gajić contributed equally to this paper.
1https://inet.omnetpp.org/docs/tutorials/queueing/doc/TokenBucket.html
2Implementation available at: https://github.com/fg-inet/omnet_htb
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INET Framework [9] that supports two-level bitrate guarantees. Our compound module, called
HTBQueue implements HTB’s classful queueing approach based on the Linux HTB implemen-
tation [10]. It allows to set priorities and rate limits for an arbitrary number of flows.3 With
the presented tool, we can define a maximum rate for the root and include several intermediate
levels that define how the overall capacity is allocated among the different classes and leaf nodes
and to which extent leaf nodes can borrow from each other.

The remainder of the paper is structured as follows. Section 2 presents related work. Sec-
tion 3 gives a brief and general overview on the working principles of HTB, while Section 4
details on our specific implementation. We validate the functionality of our compound module
in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

According to [10], the main concept and idea of the HTB originate from [11] where a hierarchi-
cal model for link sharing and a resource management model were presented. In [4], the HTB
was used to enhance the QoS guaranteed in wireless local networks. It was shown that very low
standard deviation and sustainable throughput in such networks are achievable via application
of the HTB traffic control in the MAC layer. In addition, this paper shows that HTB introduces
hierarchical classes. Such classes are highly desired by the operators due to the fact that they
allow for more efficient and scalable network management compared with the per-flow traffic
control. High rate conformance of the HTB was further tested and confirmed in [12] and [13].
In [14], the authors show the potential of the wide range of the actual Linux-based HTB imple-
mentations (including the CLI method, Linux Network Service, text configuration files, and the
Web interface) used for satisfying complex QoS requirements. The Linux implementation on
which we based our compound OMNeT++ module was presented in [10] and [15]. In our recent
work [16], one of the use cases of the proposed HTB OMNeT++ module was presented. We
investigated the potentials of using QoS Flows and slicing to achieve high customer QoE and
better utilization of the available resources. Our implementation of the HTB in OMNeT++
was used to emulate and evaluate slice-like traffic isolation.

Another area where traffic shaping plays a key role in meeting performance guarantees is
time-sensitive networking (TSN). In this context, various shaping mechanisms such as the credit-
based shaper are standardized and have been implemented as OMNeT++ modules within the
NeSTiNg [17] framework. However, in contrast to the HTB presented in this work, TSN-related
shapers usually do not provide means of two-level shaping and borrowing via guaranteed and
maximum bitrate settings.

3 HTB Overview

Traffic control is an essential part of today’s network management, supporting a myriad of co-
existing heterogeneous applications. According to the 3GPP standards for the Next Generation
Radio Access Networks (NG-RAN) in 5G [7], each flow should have its guaranteed (GBR) and
maximum bitrate (MBR). HTB is a traffic shaper and policer which allows such two-level bitrate
guarantees and is therefore very useful to mobile network operators. In the HTB terminology,
the GBR and MBR precisely translate to the assured bitrate and ceiling bitrate.

HTB is a type of classful token bucket algorithm. The rate of all the classes in the HTB
hierarchy is controlled with two nested token buckets governed respectively by tokens and

3Due to the simulative nature our implementation does not have scalability issues, while Linux HTB does.
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ctokens. The tokens are for sending at the assured rate, and the ctokens are for sending at the
ceiling rate. By a class, we refer to a type of node in the HTB tree structure.
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Figure 1: Examplary HTB tree structure.

The key structure for the HTB hierarchy is
the HTB tree. It consists of three types
of classes (or tree nodes): root, intermedi-
ate/inner nodes, and leaves. The root node
has no parent node, while the leaves have no
child nodes. Inner nodes are the intermedi-
ate nodes between the root and the leaves.
An example of such a tree structure with 3
levels, Lmax = 2, is shown in Figure 1. The
leaves are on the lowest level L = 0, and the
root is on the highest level L = 2. In the fig-
ure, we have two inner nodes constituting the
middle level L = 1. One leaf can be thought

of as one flow. In general, only the leaves have queues. Each leaf has an associated priority
level - the lower the value, the higher the priority.

All three HTB classes have the following main parameters: the level to which they belong,
their assured rate Rassured, their ceiling rate Rceiling which represents the maximum achievable
rate, and a quantum Qclass that defines the maximum size of data that can be dequeued in one
round. A prerequisite for the rates is that the sum of the assured rates of one node’s children
has to be less than or equal to the assured rate of that node. The root’s assured and ceiling
rate are usually set equal to the link bandwidth. Depending on a node’s current rate Rcurrent,
at every instance of time, the state of the node is determined with the following three values:

• 0 - can send : Rcurrent ≤ Rassured,

• 1 - may borrow : Rassured < Rcurrent < Rceiling, and
• 2 - can’t send : Rcurrent ≥ Rceiling.

In addition, each class on level L > 0 keeps a list Dclass of its descendants that are in may
borrow mode, including both leaves and intermediate nodes (cf. Figure 1). Descendants in this
list can, the same as in Linux HTB, have different priority levels P ∈ Z

+, P ≤ 7.
The fundamental working principle of the HTB is to first satisfy the assured rate of all

active classes on all priority levels, and then share the parent’s excess bandwidth fairly among
all the child nodes that are in may borrow mode. Among the nodes in this list, those with the
highest priority are served first. The portion of the excess bandwidth that each descendant class
gets from its parent is the borrowed bandwidth - Bclass. The same principle is then recursively
applied for lower priority levels. This link sharing principle is more precisely described with the
following equations4:

Rclass = min(Rceiling, Rassured +Bclass) (1)

Bclass =

{

Qclass·Rparent∑
i∈{x∈Dparent|Px=Pclass} Qi

, if min({Px|x ∈ Dparent}) ≥ Pclass

0, otherwise
(2)

where Rparent is the current rate utilized by the parent, QP are quantums of the descendant
nodes in Dparent, which are on the same priority level as the class of interest (P = Pclass).

4Based on equations from: http://luxik.cdi.cz/~devik/qos/htb/manual/theory.htm, accessed on 09.06.21
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Figure 2: Structure of the HTBQueue OMNeT++ module.

The HTB based scheduler applies these equations always starting from the active classes at the
lowest tree level (L = 0).

From Equations 1 and 2, we can see that formulas are recursive (Rparent is determined via
Equation 1), as well as that prioritized applications (i.e., the ones with lower P values) are being
served first. In the cases when there are several descendant nodes borrowing from a common
parent and having the same priority level, Deficit Round Robin (DRR) is applied to prevent
potential starvation of the classes [18]. The amount of bytes sent per node and DRR round is
controlled by the quantum.

4 Implementation

We base our implementation on existing queueing compound modules from the OMNeT++
INET framework. More specifically, we extend the PriorityQueue to build our compound mod-
ule. HTBQueue consists of two main modules: a classifier (HTBClassifier) and a scheduler
(HTBScheduler). Packets enqueued by the HTB are stored within multiple queuing modules.
Any queue from the INET framework can be used with the default being the generic Pack-
etQueue. As the implementation requires link-layer specific knowledge and a slight adjustment
to the utilized interface module (see Section 4.3), currently, the HTBQueue module can be used
only with the Point-to-Point (PPP) interface available within the INET framework. We use
OMNeT++ version 5.5.15 and INET Framework version 4.2.06.

4.1 HTBQueue Compound Module Functional Overview

Figure 2 presents the functional flow of the HTBQueue module operation from packet arrival
until packet dequeue. Upon arrival 1○, the classifier classifies all incoming packets according to
its filters. These packets are placed 2○ into a respective queue that directly corresponds to a
leaf in the HTB class structure. The classifier also informs 3○ the scheduler into which queue
a packet is placed. It allows the HTBScheduler to activate the respective classes. This way the
scheduler knows that there are packets present in the queue of the respective leaf class and it
can include these classes in the dequeue operation. The packets stay in their queues until the
PPP interface sends 4○ a ready-to-send signal. Upon reception of that signal 5○, the scheduler
determines the index of the next leaf (and in turn the index of the packet queue) to dequeue.
The queue index is 6○ determined based on the information that the scheduler has about the
queues, their rate boundaries, class states, and the DRR resource sharing principle. Lastly, the
packets are popped 7○ from the chosen queue and sent 8○ over the PPP interface.

5https://github.com/omnetpp/omnetpp/releases/tag/omnetpp-5.5.1, last accessed on 15th of June 2021
6https://github.com/inet-framework/inet/releases/tag/v4.2.0, last accessed on 15th of June 2021
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Figure 3: Flow chart of the HTBScheduler functionality

4.2 HTBClassifier Module

The HTBClassifier module is an adaptation of the already existing ContentBasedClassifier.7

The functionality of the ContentBasedClassifier is fully preserved and extended to allow for
cooperation with the HTBScheduler module. With the HTBClassifier, filters that direct flows
into desired leaf classes of the HTB structure can be specified. The packets from these flows
are subsequently placed in the respective packet queues within the HTBQueue module.

The additional functionality compared to the ContentBasedClassifier allows the HTBClas-
sifier to inform the scheduler into which queue (i.e., leaf class) an incoming packet is placed.
This involves calling the htbEnqueue method of the scheduler which activates the respective
leaf class if it is not already active, and thus makes sure that the leaf is considered for the
dequeue operation.

4.3 HTBScheduler Module

We implement the core functionality of the HTB queueing discipline in the HTBScheduler
module. The module is essentially a port of the Linux HTB source code8. In its majority,
the HTBScheduler is a translation of the C-based Linux HTB implementation (including all the
main functionalities and constructs) into C++/OMNeT++ compatible code. The HTBScheduler
does not implement any actual queueing, instead it only keeps track of the states of the packet
queues. It includes the actual tree structure of the HTB and implements key functions of the
HTB responsible for tracking the packet enqueues, keeping the current state in each leaf queue,
and selecting a leaf class queue to transmit next. The dequeue occurs when the PPP interface
finished transmission, or is idle and a new packet becomes available for dequeuing.

The functionality of the HTBScheduler is outlined in Figure 3. After a finished transmis-
sion 1○, the PPP module invokes the HTBQueue and checks for packets to dequeue 2○. If
packets are available 3○, and any class related to any packet queue with available packets is not

7For more details, see: https://doc.omnetpp.org/inet/api-current/neddoc/inet.queueing.classifier.

ContentBasedClassifier.html, last accessed on 13th of July 2021
8https://github.com/torvalds/linux/blob/master/net/sched/sch_htb.c, last accessed on 13.07.21
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in can’t send mode 4○, the htbDequeuemethod is called 5○ and a packet queue index is returned
to the interface 6○. Then, the packet is dequeued and transmitted 7○. If packets are available
and associated classes are in can’t send mode, the PPP interface is put to idle 8○ and a timeout
is prepared 9○ that informs the PPP module at the moment a packet is ready for dequeue. The
same operations are performed when the HTBQueue is empty and a new packet arrives 1○.
The functionality of the HTBScheduler also required to make the refreshOutGateConnection
method of the PPP module public. The method is called 11○ from the HTBScheduler module
in case there is a packet to dequeue, the timeout occurred, and the interface was already idle
at that point 10○.

The scheduler can be configured using an XML file that defines the HTB class hierarchy (as
shown in Figure 1) along with the class-specific settings. Each class is represented as a separate
element in the XML file, exemplarily shown for a generic class representation in Listing 1.
Detailed instructions and examples for creation of such XML documents can be found in the
GitHub repository.

<class id="className">

<parentId> classParent</parentId>
<rate type="int">Rassured, className</rate>

<ceil type="int">Rceiling, className</ceil>

<burst type="int">burst</burst>

<cburst type="int">cburst</cburst>

<level type="int">classLevel</level>

<quantum type="int">quantum</quantum>

<mbuffer type="int">mbuffer</mbuffer>

                   <priority>priority</priority>

<queueNum type="int">n</queueNum>
</class>

Listing 1: XML representation of a class.

The per class settings include: assured bit-rate
(Rassured), ceil-ing bitrate (Rceiling), burst (Bytes
that can be burst at MBR), cburst (Bytes that can
be burst at link bitrate), parentId (parent in HTB
tree hierarchy, NULL for the root class), level (level
in the HTB tree structure), quantum (Bytes that can
be sent in one DRR round), mbuffer (penalty time
for big burst events), priority (only for the leaf
classes therefore green in Listing 1.), and queueNum

(corresponding packet queue index, only for the leaf
class). Additionally, each class must have a unique
name, the top-most class needs to be called “root”,
and inner as well as leaf classes must have “inner”
or “leaf” in their names respectively.

5 Validation

We evaluate the functionality of our HTB implementation via three scenarios: Scenario 1
considers five UDP flows without inner classes, Scenario 2 considers five flows with inner classes,
and Scenario 3 considers two flows of different priority. The simulation setup consists of two
hosts, directly connected via a link having 50Mbit/s capacity. The queueing module of the PPP
interface on each host is replaced with the HTBQueue module. The first flow starts at second
0, the subsequent flows start with an offset of 10s each. Each client sends 1500 Byte (physical
layer size) packets each 100µs, corresponding to a bitrate of 120 Mbit/s, and terminates after
100s. Each flow is assigned to its own leaf class in the HTB hierarchy. The configurations of
the HTB and of the rates in the different scenarios are shown in Table 1. In scenario 2, class
Inner 1 is a parent for flows 0, 1, and 2 and Inner 2 is the parent of flows 3 and 4. Within
scenario 3, flow 0 is prioritized.

Figure 4a shows the results for Scenario 1. The plot shows the throughput of each flow
on the y-axis and the x-axis represents the experiment time. As expected, each flow receives
at least its Rassured and never exceeds its Rceiling. The remaining bandwidth is also evenly
divided between flows competing for it. In more detail, we observe that in the first 10 seconds
of simulation, the only active flow 0 achieves a throughput equal to its Rceiling, that is 20
Mbit/s. Flow 1, upon arrival, is able to utilize its full Rceiling of 25 Mbit/s as well since the
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Table 1: Validation scenarios leaf/inner class Rassured (Ra) and Rceiling (Rc) in Mbit/s

Flow 0 Flow 1 Flow 2 Flow 3 Flow 4 Inner 1 Inner 2
Ra Rc Ra Rc Ra Rc Ra Rc Ra Rc Ra Rc Ra Rc

Scenario 1 3 20 6 25 9 30 12 35 15 40 — —
Scenario 2 3 20 6 25 9 30 12 35 15 40 20 40 30 40
Scenario 3 5 30 5 30 — — — — —
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(a) Scenario 1 - no inner nodes.
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(b) Scenario 2 - two inner nodes.

Figure 4: Scenarios with 5 UDP flows.

total available bandwidth is not yet fully utilized. With the arrival of flow 2, each flow still
receives its Rassured and the remaining bandwidth is shared equally as expected. That is, flows
0 through 2 receive their Rassured of 3, 6 and 9 Mbit/s, respectively and each flow additionally
gets an even share of the remaining 50− 3− 6− 9 = 32 Mbit/s for a total of 13.66, 16.66, and
19.66 Mbit/s respectively. The same principle holds until the end of the simulation.

Figure 4b shows the results for Scenario 2. For the first 10 seconds, we see the same behavior
as in Scenario 1. Between seconds 10 and 30, we see a slightly different sharing behavior, since
flows 0, 1, and 2 are limited by their parent inner class. The total bandwidth share of flows
0, 1, and 2 now cannot exceed 40 Mbit/s (the Rceiling of their parent). This results in only
22 Mbit/s (instead of 32) being available for sharing and allows the flows to get 10.33, 13.33,
and 16.33 Mbit/s, respectively. Upon arrival, flow 3, having a different parent, is able to utilize
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29 Mbit/s with the rates of flows 0 to 2 dropping to their share of the remaining 21 Mbit/s.
With flow 4 arriving 10 seconds later, flows 3 and 4 utilize the 30 Mbit/s (Rassured of inner 2),
each getting their Rassured and evenly splitting the remaining bandwidth to obtain 13.5 and
16.5 Mbit/s, respectively. Similarly, flows 0 to 2 fully utilize and share the remaining 20 Mbit/s
(Rassured of inner 1). Similarly, the sharing continues until the end of the experiment.

Figure 5 shows the results for Scenario 3. The prioritized flow 0 is able to continuously
obtain its Rceiling and flow 1 obtains the remaining rate until flow 0 is switched off. The
second flow is then also able to obtain its Rceiling. This behavior of flow 0 is in line with the
expectation, as the HTB will always first satisfy the Rassured of leaves and then satisfy the
Rceiling of higher priority leaves. Additionally, the end-to-end delay of flow 0 remains constant
throughout the experiment at 220 ms. Flow 1 starts with an end-to-end delay of 320 ms and
subsequently drops to 220 ms when flow 0 ends its transmission (the delays are not shown on
the figures for the sake of clarity). This is different from the other scenarios, where we see
the delay changing at every arrival or departure of a flow. Hence, priorities in the HTB can
help to control the delay. Equivalent tests have been run using a TCP-based client and the
corresponding results confirmed that the bandwidth is allocated as expected for TCP as well.

Several studies, as indicated in Section 2, highlight the high rate conformance of the HTB
as one of its key properties. Therefore, we also evaluated the rate conformance obtained in
the previously described scenarios. Figure 6 shows the absolute deviation of the per-second
throughput from the theoretically expected value, for each of the flows. For better visibility,
the deviation is presented with a logarithmically scaled y-axis. A star symbol represents the
mean of the absolute deviation for the corresponding flow. The horizontal lines represent the
median, the boxes denote the 25th (Q1) to 75th (Q3) percentile, and the whiskers denote Q1 and
Q3 plus the 1.5-fold of the inter-quartile range (Q3-Q1). For example, for Scenario 1, the mean
deviations for the five flows are (76.89, 82.56, 80.03, 100.99, 115.45) kbps, respectively. Relative
to the assured rates of the flows, the average deviations are equal to 2.6%, 1.38%, 0.89%, 0.84%,
and 0.77%, respectively. However, there are several outliers, as we can see from the figure.
These outliers occur in the transient phases, i.e., upon flows arriving or leaving the system.
Furthermore, HTB guarantees the rates on average, so reaching a steady state takes longer
than the 1s scale on which the measurements were done. The median deviations are below
10 kbps for all scenarios, except for those including priorities. The average deviation is around
100 kbps on maximum. Therefore, we can conclude that our HTBQueue implementation has a
high rate conformance, comparable to existing HTB implementations.

6 Conclusion

The hierarchical design of HTB allows to assign each traffic flow two bandwidth parameters: an
assured rate and a ceiling rate. While the first one is the minimum guaranteed rate, the second
one is an upper limit until which the flow can borrow excess bandwidth. So far, OMNeT++
provided no possibility to configure such bitrate guarantees on a per-flow or per-class level. To
fill this gap, we implemented the full HTB functionality as an OMNeT++ compound module,
based on the implementation in the Linux traffic control (tc). It allows to classify flows and to
hierarchically configure two-level bitrate guarantees on a per-class and per-flow granularity by
making use of token and ctoken buckets. Our experimental validation shows the high confor-
mance of assured and ceiling rates, as well as the fairness in sharing excess bandwidth between
competing flows. We furthermore show that different priority levels allow the HTBQueue to
interfere in the fair excess bandwidth sharing mechanism, in favor of the higher priority flow.

8
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