
Towards a modern CMake workflow

OMNeT++ Community Summit

Heinz-Peter Liechtenecker, Raphael Riebl

8 – 10 September 2021



Introduction

Motivation for another build system

CMake as a powerful alternative

Developing with Visual Studio Code

Technical Preview

1



Motivation for another build system



The OMNeT++ build system

OMNeT++ . . .

• comes with an Eclipse-based IDE

• comes with a pre-built MinGW/MSYS environment

(Linux build tools for Windows)

• offers an “out of the box” experience (IDE, toolchain,

examples) for beginners

OMNeT++ Makefile-based build system (opp makemake) . . .

• feels native only on Unix systems

• makes management of dependencies and variants difficult

• often conflicts with CMake-based dependencies

• complicates the use of other IDEs (especially on Windows)

2



The OMNeT++ build system

OMNeT++ . . .

• comes with an Eclipse-based IDE

• comes with a pre-built MinGW/MSYS environment

(Linux build tools for Windows)

• offers an “out of the box” experience (IDE, toolchain,

examples) for beginners

OMNeT++ Makefile-based build system (opp makemake) . . .

• feels native only on Unix systems

• makes management of dependencies and variants difficult

• often conflicts with CMake-based dependencies

• complicates the use of other IDEs (especially on Windows)

2



The OMNeT++ build system

OMNeT++ . . .

• comes with an Eclipse-based IDE

• comes with a pre-built MinGW/MSYS environment

(Linux build tools for Windows)

• offers an “out of the box” experience (IDE, toolchain,

examples) for beginners

OMNeT++ Makefile-based build system (opp makemake) . . .

• feels native only on Unix systems

• makes management of dependencies and variants difficult

• often conflicts with CMake-based dependencies

• complicates the use of other IDEs (especially on Windows)

2



The OMNeT++ build system

OMNeT++ . . .

• comes with an Eclipse-based IDE

• comes with a pre-built MinGW/MSYS environment

(Linux build tools for Windows)

• offers an “out of the box” experience (IDE, toolchain,

examples) for beginners

OMNeT++ Makefile-based build system (opp makemake) . . .

• feels native only on Unix systems

• makes management of dependencies and variants difficult

• often conflicts with CMake-based dependencies

• complicates the use of other IDEs (especially on Windows)

2



The OMNeT++ build system

OMNeT++ . . .

• comes with an Eclipse-based IDE

• comes with a pre-built MinGW/MSYS environment

(Linux build tools for Windows)

• offers an “out of the box” experience (IDE, toolchain,

examples) for beginners

OMNeT++ Makefile-based build system (opp makemake) . . .

• feels native only on Unix systems

• makes management of dependencies and variants difficult

• often conflicts with CMake-based dependencies

• complicates the use of other IDEs (especially on Windows)

2



The OMNeT++ build system

OMNeT++ . . .

• comes with an Eclipse-based IDE

• comes with a pre-built MinGW/MSYS environment

(Linux build tools for Windows)

• offers an “out of the box” experience (IDE, toolchain,

examples) for beginners

OMNeT++ Makefile-based build system (opp makemake) . . .

• feels native only on Unix systems

• makes management of dependencies and variants difficult

• often conflicts with CMake-based dependencies

• complicates the use of other IDEs (especially on Windows)

2



The OMNeT++ build system

OMNeT++ . . .

• comes with an Eclipse-based IDE

• comes with a pre-built MinGW/MSYS environment

(Linux build tools for Windows)

• offers an “out of the box” experience (IDE, toolchain,

examples) for beginners

OMNeT++ Makefile-based build system (opp makemake) . . .

• feels native only on Unix systems

• makes management of dependencies and variants difficult

• often conflicts with CMake-based dependencies

• complicates the use of other IDEs (especially on Windows)

2



Why CMake?

We believe
A well-designed software architecture and build environment

reduces the management overhead and thus allows even small

teams to maintain and improve complex projects.

1. CMake is the de facto standard for almost every C/C++

open-source project thanks to its versatility

2. CMake generates native build environments that will compile

source code, create libraries, generate wrappers and build

executables in arbitrary combinations

3. CMake is cross-platform from the beginning (e.g., can

generate Makefiles but also the Ninja build rules)

3



Why CMake?

We believe
A well-designed software architecture and build environment

reduces the management overhead and thus allows even small

teams to maintain and improve complex projects.

1. CMake is the de facto standard for almost every C/C++

open-source project thanks to its versatility

2. CMake generates native build environments that will compile

source code, create libraries, generate wrappers and build

executables in arbitrary combinations

3. CMake is cross-platform from the beginning (e.g., can

generate Makefiles but also the Ninja build rules)

3



Why CMake?

We believe
A well-designed software architecture and build environment

reduces the management overhead and thus allows even small

teams to maintain and improve complex projects.

1. CMake is the de facto standard for almost every C/C++

open-source project thanks to its versatility

2. CMake generates native build environments that will compile

source code, create libraries, generate wrappers and build

executables in arbitrary combinations

3. CMake is cross-platform from the beginning (e.g., can

generate Makefiles but also the Ninja build rules)

3



Why CMake?

We believe
A well-designed software architecture and build environment

reduces the management overhead and thus allows even small

teams to maintain and improve complex projects.

1. CMake is the de facto standard for almost every C/C++

open-source project thanks to its versatility

2. CMake generates native build environments that will compile

source code, create libraries, generate wrappers and build

executables in arbitrary combinations

3. CMake is cross-platform from the beginning (e.g., can

generate Makefiles but also the Ninja build rules)

3



CMake as a powerful alternative



From Sources to Executables

4



Requirements

• Write code only once – if the concept performs in simulation,

have everything ready for the production code

• Minimize management overhead by having a single source of

truth/configuration (CMake files)

• Allow for continuous integration (automated tests etc.)

• Seamless workflow between simulation and actual production

code (transferring results made easy)

5



Requirements

• Write code only once – if the concept performs in simulation,

have everything ready for the production code

• Minimize management overhead by having a single source of

truth/configuration (CMake files)

• Allow for continuous integration (automated tests etc.)

• Seamless workflow between simulation and actual production

code (transferring results made easy)

5



Requirements

• Write code only once – if the concept performs in simulation,

have everything ready for the production code

• Minimize management overhead by having a single source of

truth/configuration (CMake files)

• Allow for continuous integration (automated tests etc.)

• Seamless workflow between simulation and actual production

code (transferring results made easy)

5



Requirements

• Write code only once – if the concept performs in simulation,

have everything ready for the production code

• Minimize management overhead by having a single source of

truth/configuration (CMake files)

• Allow for continuous integration (automated tests etc.)

• Seamless workflow between simulation and actual production

code (transferring results made easy)

5



Make OMNeT++ a first-class citizen

OMNeT++ is neatly integrated into sophisticated projects:

• Simulation: business logic and INET1

• Testing: Unit tests covering your code, e.g. with GTest

• Production: business logic and ASIO2 for deployment

1OMNeT++ model, i.e. simulated network communications
2C/C++ asynchronous network library, i.e. native network communications

6



Developing with Visual Studio Code



The OMNeT++ IDE

• Straightforward workflow for novices and self-contained

simulation models, i.e. without dependencies to third-party

components

• Does not ship with CMake support (Eclipse plugin exists)

• Its Eclipse core can be slow and bulky

7



What does the community want?3

3Stackoverflow Survey 2021:

https://insights.stackoverflow.com/survey/2021 8

https://insights.stackoverflow.com/survey/2021


OMNeT++ and Visual Studio Code (VSCode)

VSCode is cross-platform and highly customisable. We suggest the

following extensions making VSCode a neat IDE for OMNeT++

development (with CMake):

• Cpptools (C/C++ Language Support)

• CMake (Language Support)

• CMake Tools (CMake project integration and automation)

• OMNeT++-NED (NED language support)

• VSCode-LLDB (LLDB debugging support)

9



Technical Preview



Technical Preview

OMNeT++ tictoc demo in VSCode
https://github.com/HpLightcorner/opp-summit-2021-cmake-tp

Find the latest OMNeT++ CMake package at

https://github.com/omnetpp/cmake

10

https://github.com/HpLightcorner/opp-summit-2021-cmake-tp
https://github.com/omnetpp/cmake

	Motivation for another build system
	CMake as a powerful alternative
	Developing with Visual Studio Code
	Technical Preview

