Simulating 6TiSCH Stack for Avionic Wireless Sensor Networks in OMNeT++

OMNeT++ Community Summit 2022

Yevhenii Shudrenko, Koojana Kuladinithi and Andreas Timm-Giel
Agenda:

1. Introduction
2. Background
 Challenge
3. Implementation
4. Demos
 Network Bootstrapping
 Adapting to Traffic
 Interference Avoidance
5. Conclusion & Outlook
1. Introduction
Wireless Sensor Networks

Figure 1: Wireless Sensor Networks (WSNs) examples.
Wireless Sensor Networks

Figure 1: WSNs examples.

Challenges
• Reliability
• Scalability
• Interoperability
• Energy-efficiency
Figure 2: Protocols based on IEEE 802.15.4 standard for low-rate wireless personal area networks.
Figure 2: Protocols based on IEEE 802.15.4 standard for low-rate wireless personal area networks.
Timeslotted Channel Hopping (TSCH)

Figure 3: TSCH schedule example for a 4-node network.
IPv6 over the TSCH mode of IEEE 802.15.4 (6TiSCH)

<table>
<thead>
<tr>
<th>Apps</th>
<th>CoJP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoAP / OSCORE</td>
<td>6LoWPAN ND</td>
</tr>
<tr>
<td>UDP</td>
<td>ICMPv6</td>
</tr>
<tr>
<td>IPv6</td>
<td></td>
</tr>
<tr>
<td>6LoWPAN HC / 6LoRH HC</td>
<td>Scheduling Functions</td>
</tr>
<tr>
<td>6top Sublayer + 6top Protocol (6P)</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.15.4 TSCH</td>
<td></td>
</tr>
</tbody>
</table>

Routing, applications
Transport
Network
Medium Access Control (MAC)

Figure 4: IETF 6TiSCH.
Figure 5: Routing Protocol for Low-Power and Lossy Networks (RPL) Destination-Oriented Directed Acyclic Graph (DODAG)
Minimal Scheduling Function (MSF)

Figure 6: TSCH schedule under MSF.
2. Background
Wireless Avionics Intra-Communication (WAIC)

Current Aircraft Communications:
- Safety-related
 - HF/VHF/Satellite comms
- Non-safety related
 - Passenger connectivity

Communications with ground

Operational Communications
Internet Connectivity

WAIC Systems:
- Safety-related applications:
 - Sensors/Actuators
 - Wireless redundancy for wired communications

Figure 7: WAIC use-cases

1Aerospace Vehicle Systems Institute. 2011
Quality of Service (QoS) in 6TiSCH

Figure 8: QoS challenges in a WAIC network using 6TiSCH.
Quality of Service (QoS) in 6TiSCH

Figure 8: QoS challenges in a WAIC network using 6TiSCH.
Quality of Service (QoS) in 6TiSCH

Figure 8: QoS challenges in a WAIC network using 6TiSCH.
Solution

<table>
<thead>
<tr>
<th>Apps</th>
<th>CoJP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoAP / OSCORE</td>
<td>6LoWPAN ND</td>
</tr>
<tr>
<td>UDP</td>
<td>ICMPv6</td>
</tr>
<tr>
<td>IPv6</td>
<td></td>
</tr>
<tr>
<td>6LoWPAN HC / 6LoRH HC</td>
<td>Scheduling Functions</td>
</tr>
<tr>
<td>6top Sublayer + 6top Protocol (6P)</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.15.4 TSCH</td>
<td></td>
</tr>
</tbody>
</table>

Figure 9: 6TiSCH stack with cross-layer information exchange (6TiSCH-CLX)[1].
Results

Figure 10: Mean end-to-end delay of a safety-critical application (smoke alarm) under default 6TiSCH stack and cross-layer improvements.
3. Implementation
Implementation Overview

Network Layer
- IPv6NetworkLayer:
 - Configuration parameters, interface to upper layers
- ipv6:
 - Core IPv6 functionality
- ipv6RoutingTable:
 - Destination cache management, routing table access
- IPv6NeighborDiscovery:
 - Neighbor discovery and cache management

Routing Sublayer
- Rpl:
 - Rpl instance maintenance
- TrickleTimer:
 - Control messages broadcast interval
- ObjectiveFunction:
 - Parent selection interface
- TschSpectrumSensing:
 - Issues channel sense requests
- TschLinkInfo:
 - State information per neighbor
- TschMsf:
 - Minimal Scheduling Function
- TschSf:
 - Generic interface for scheduling functions
- Tsch6TopSublayer:
 - Transaction management

McM Sublayer
- TschMac:
 - MAC FSM
 - Based on IEEE802.15.4 INET implementation
 - Retransmissions
- TschSlotframe:
 - Management of all links
- TschLink:
 - Cell representation: location, type, options
- TschNeighbor:
 - Queue management per neighbor
- TschVirtualLink:
 - Extends TschLink with priorities
- TschHopping:
 - Channel hopping sequence

Phy Layer
- WacPhy:
 - Extension of IEEE 802.15.4 PHY with 40 channels in 4.2-4.3 GHz band
- Ieee802154NarrowbandDimensionalRadio:
 - Configurable implementation of IEEE 802.15.4 PHY
- RadioMedium:
 - INET 4.2 radio medium interface
Implementation – RPL

RPL
- Joining/leaving DODAGs
- Route discovery (DAOs)
- Loop detection and repair
- DODAG version control (sink)

TrickleTimer
- Maintaining trickle intervals
- Triggering DIO broadcasts

ObjectiveFunction
- Preferred parent selection from candidate list
- Rank computation using link metrics

3 RFC 6206. https://www.rfc-editor.org/rfc/rfc6206
Implementation - TSCH

6TOP SUBLAYER

Tsch6TopSublayer
Transaction management

TschLinkInfo
State information per neighbor

TschMsf
Minimal Scheduling Function

TschSf
Generic interface for scheduling functions

MAC LAYER

TschMac
- MAC FSM
- Based on IEEE802.15.4 INET implementation
- Retransmissions

TschSlotframe
Management of all links

TschLink
Cell representation: location, type, options

TschNeighbor
Queue management per neighbor

TschVirtualLink
Extends TschLink with priorities

TschHopping
Channel hopping sequence
4. Demos
Network Bootstrapping

Figure 11: Network bootstrapping
Adapting to Traffic

Figure 12: MSF adapting number of scheduled cells to the traffic load (1 pkt/sf).
Adapting to Traffic

Figure 12: MSF adapting number of scheduled cells to the traffic load (1 pkt/sf).
Adapting to Traffic

Figure 12: MSF adapting number of scheduled cells to the traffic load (1 pkt/sf).
Adapting to Traffic

Figure 12: MSF adapting number of scheduled cells to the traffic load (1 pkt/sf).
Adapting to Traffic

Figure 12: MSF adapting number of scheduled cells to the traffic load (1 pkt/sf).
Interference Avoidance

Figure 13: MSF relocating interfered cells after HOUSEKEEPING_PERIOD duration.
Interference Avoidance

Figure 13: MSF relocating interfered cells after HOUSEKEEPING_PERIOD duration.
Interference Avoidance

Figure 13: MSF relocating interfered cells after HOUSEKEEPING_PERIOD duration.
Figure 13: MSF relocating interfered cells after HOUSEKEEPING_PERIOD duration.
5. Conclusion & Outlook
Conclusion & Outlook

• Modular 6TiSCH-stack implementation with MSF
• Cross-layer communication to achieve QoS
• Highly extensible
Conclusion & Outlook

• Modular 6TiSCH-stack implementation with MSF
• Cross-layer communication to achieve QoS
• Highly extensible

Missing:
• Proper integration with ICMPv6
• Upper layers (CoAP)
• Fragmentation layer (6LoWPAN)
• Migration to OMNeT++ 6.X, INET 4.4
• Testing (unit, end-to-end, …)
Thank You very much
References

