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Motivation

• Scheduling algorithms determine the order of packets to dequeue from the queue.
• Hierarchical Token Bucket (HTB) [1] is a hierarchical scheduling algorithm that is in the stock Linux kernel since

2005.
• Hierarchical Link Sharing (HLS) [2] is a new hierarchical scheduling algorithm, implemented in Linux.
• Our goal is to compare HTB and HLS.
• An implementation of HTB into OMNeT++ simulator [3] already exists.
• We implement HLS into OMNeT++, then validate and compare HLS and HTB on OMNeT++.
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Research Questions

• How can HLS be implemented into OMNeT++ discrete event simulator?
• How well do HTB and HLS (hierarchical queuing structures) fit within OMNeT++ queuing structure?
• In what ways is HLS advantageous to use compared to HTB (bandwidth sharing, impact on delay, etc.)?
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Background
Hierarchical Scheduling Algorithms

• Scheduling algorithms that are implemented into Linux kernel are called qdiscs.
• Qdiscs are split into two types: classless and classful.
• Packets arriving at classful qdiscs are filtered into one of the user-defined classes.
• Using these classes, users can control bandwidth sharing between classes.
• Using classes, a hierarchy can be realized.
• FIFO, fq_codel [4] are classless qdiscs, HLS and HTB are classful qdiscs.
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Background
Hierarchical Scheduling Algorithms
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Figure 1: Example classful qdisc hierarchy
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Background
Hierarchical Link Sharing (HLS)

• Each class except root has a parameter called weight.
• Each node shares bandwidth to their children proportional to their weights.
• Each class has balance, number of bytes a class is allowed to transmit.
• Classes can be active or idle. An inner class is active if any of its descendants is active.
• HLS works in rounds, in each round balance is propagated from root to active leaf classes.
• Balance is consumed in leaf classes to transmit packets.
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Background
Hierarchical Link Sharing (HLS)

• Each class distributes its balance to its active chil-
dren, starting from top.

• The balance each child gets is proportional to their
weight (compared to their siblings).
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Figure 2: HLS balance distribution
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Background
Hierarchical Link Sharing (HLS)

• Each class distributes its balance to its active chil-
dren, starting from top.

• The balance each child gets is proportional to their
weight (compared to their siblings).
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Figure 3: HLS balance distribution
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Background
Hierarchical Link Sharing (HLS)

• After the distribution of balance, HLS cycles be-
tween each leaf class.

• Dequeues a packet if balance is bigger than next
packet byte size.

• Consumed balance is returned to root, to be distrib-
uted in the next round.
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Figure 4: HLS balance distribution
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Background
Hierarchical Token Bucket (HTB)

• Each class has parameters guaranteed rate and maximum rate.
• Leaf classes further have parameters priority and quantum value.
• Quantum value determines proportion of bandwidth a class will "borrow" from their ancestor.
• Classes have three modes depending on their current rate: can send (green), can borrow (yellow), and cannot send

(red).
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Background
Hierarchical Token Bucket (HTB)

• HTB iterates through levels starting from bottom.
• Searches for active green classes with highest pri-

ority.
• If the found green class is a leaf, HTB simply de-

queues a packet from that leaf class.
• If there are multiple classes to pick from, HTB uti-

lizes a round-robin that consumes the quantum val-
ues to dequeue packets.
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Figure 5: Example HTB Hierarchy
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Background
Hierarchical Token Bucket (HTB)

• If the found green class is a an inner class, HTB
picks a descendant leaf to "borrow" bandwidth to.

• The bandwidth a class gets from its ancestors will
be proportional to their quantum value, enforced
through a deficit round-robin.
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Figure 6: Example HTB Hierarchy
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Analysis
Comparison of HLS and HTB

• Both are hierarchical scheduling algorithms.
• HTB has 4 different parameters that control throughput, HLS has only 1.
• HLS does not have a way to replicate the effects of priority and maximum rate parameters of HTB.
• In HLS, the rate a class achieves when every class is active can be thought as the guaranteed rate.
• Quantum values of HTB are by default proportional to their guaranteed rates. If set like this, they behave the similar

to weights in HLS.
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Analysis
Comparison of HLS and HTB

• HLS goes top-down while sharing bandwidth, so it is independent of condition of its subtrees.
• HTB sharing depends on which and how many descendant leaf classes are in yellow mode.
• In theory, HLS should have better class isolation. Excess bandwidth are contained in the subtrees.
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Analysis
Comparison of Linux and OMNeT++ Environment

• OMNeT++ clock does not include overhead generated by classifying and scheduling operations.
• The overhead is not significant enough to diverge results of OMNeT++ and Linux.
• By default OMNeT++ clock is a perfect simulated clock, does not have any clock drift.
• INET 4.4 introduced Time-Sensitive Networking (TSN) features, including device clocks.
• HTB OMNeT++ implementation uses normal simulation clock.
• HTB heavily uses clocks to regulate class modes, so drift can result in very minor differences.
• HLS is unaffected by clock drift.
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Implementation of HLS into OMNeT++/INET
Queuing in OMNeT++

• Queuing modules are active/passive packet sink/sources.
• Modules communicate using C++ method calls through gates.
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Figure 7: Example flow of a queue with a classifier and scheduler in OMNeT++
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Implementation of HLS into OMNeT++/INET
Design

An ideal implementation should have the following properties:

• Should work the same as the qdisc implementation.
• The implementation should be able to use the already available classifiers and queues in INET Framework.
• The leaf packet queue types should be freely selectable. Even HLS can be a leaf queue of itself.

We designed two modules:

• HLSScheduler: Implements HLS functionality, selects which queue to dequeue from for every packet pull request.
• HLSQueue: Combine classifier, queues and scheduler into one compound module.
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Implementation of HLS into OMNeT++/INET
HLSQueue

The implementation has the same structure as HTB OMNeT++ implementation [3].

CompoundPacketQueueBase queue

ContentBasedClassifier
classifier


PacketQueue
queue[numQueues]


HLSScheduler
scheduler
Upper Layer Network

Interface


Figure 8: Design of HLSQueue module

CompoundPacketQueueBase handles interaction with upper layer and network interface.

• Outgoing packets are forwarded to classifier.
• Pull packet request from network interface is forwarded to scheduler.
• Hierarchy is set up using an XML file.
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Validation of HLS and HTB Against Linux
Configuration of HTB/HLS Validation Experiments

• Packets are generated on "Packet Generator" so that the generation time does not affect the scheduling.
• Hardware experiments use iperf3 [5] for packet generation.
• OMNeT++ experiments use UdpBasicApp for packet generation.

Packet 
Generator
 Scheduler Sink

10 Gbps 1 Gbps

HLS or HTB is bound
to this interface

Figure 9: Configuration
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Validation of HLS and HTB Against Linux
HLS Validation Test

Figure 10: Hierarchy of HLS validation test.
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• Scheduler is set up on a 1 Gbps link.
• Classes should reach throughput in Mbps equal to their weights, i.e. A1→ 300 Mbps.
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Validation of HLS and HTB Against Linux
HLS Validation Test Results

Figure 11: HLS qdisc Figure 12: HLS OMNeT++
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Validation of HLS and HTB Against Linux
HTB Validation Test

Figure 13: Hierarchy of HTB validation test.

• Guaranteed rate/Maximum rate in Mbps.
• Each flow should reach their guaranteed rate while not exceeding maximum rate.
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Validation of HLS and HTB Against Linux
HTB Validation Test Results

Figure 14: HTB qdisc Figure 15: HTB OMNeT++
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Experiments on OMNeT++
Bandwidth Sharing Comparison

• Numbers in nodes correspond to weight for HLS and guaranteed rate in Mbps for HTB.
• Quantum values are proportional to guaranteed rates.
• Maximum rate of every node is equal to link rate.
• Red nodes denote idle nodes, green nodes denote active nodes.
• Every active leaf class is generating packets at a speed of 100 Mbps.

Figure 16: Hierarchy used in throughput comparison.
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Experiments on OMNeT++
Bandwidth Sharing Comparison

• Throughputs are the same before B2 becomes idle.
• When B2 becomes idle, the throughput of B does not change for HLS, does change for HTB.
• HTB shares the extra bandwidth with every leaf class, HLS gives all the extra bandwidth to B1.

Figure 17: HLS Throughput Figure 18: HTB Throughput
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Experiments on OMNeT++
Delay During Congestion

• Experiment was done in OMNeT++.
• What happens to the delay of classes that send at or lower than their guaranteed rate during congestion?
• The experiment consists of 4 runs, in each only one of the classes is sending at lower than their guaranteed rate.

Table 1: End-to-end delay on delay during congestion experiment.

Classes HLS Mean (ms) HTB Mean (ms)
A1 1.94 2.37
A2 1.45 2.08
B1 1.48 4.07
B2 1.32 1.63
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Experiments on OMNeT++
Jitter Comparison

• In each experiment, the same class achieves the same throughput.

Figure 19: Hierarchy used in HLS and HTB delay experiments.

root

A B

A1 A2 B2B1

Table 2: Weights used in HLS delay experiments.

Classes Weights
A 2
B 3

A1 1
A2 3
B1 1
B2 2
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Experiments on OMNeT++
Jitter Comparison

• HTB has 2 scenarios:
• Scenario 1 does not involve borrowing, classes only achieve their guaranteed rates.
• Scenario 2 has low guaranteed rates, so that classes "borrow" a lot.

• Borrowing has an effect on jitter and delays while using HTB.

Table 3: HTB Scenario 1

Classes GR(Mbps) Quantum
root 100 -
A 40 -
B 60 -
A1 10 1500
A2 30 4500
B1 20 3000
B2 40 6000

Table 4: HTB Scenario 2

Classes GR(Mbps) Quantum
root 100 -
A 4 -
B 6 -
A1 1 1500
A2 3 4500
B1 2 3000
B2 4 6000
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Experiments on OMNeT++
Jitter Comparison

Class A1 Class A2

Class B1 Class B2
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Conclusion

• RQ: In what ways is HLS advantageous to use compared to HTB (bandwidth sharing, impact on delay, etc.)?
• HLS achieves class isolation better than HTB. The excess bandwidth from a leaf class in HLS is shared to leaf classes that

are as close as possible.
• The jitter resulting from HTB is higher than HLS.
• During congestion, the delay of well-behaving classes are lower in HLS compared to HTB.

• In future, using OMNeT++ implementation, a rate limiting feature can be added to HLS and then tested for rate
conformance and delay/jitter bounds.
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Backup Slides
Overhead Test

• OMNeT++ does not include scheduling overhead.
• The hierarchies are perfect binary trees.
• UDP packets of size 60 bytes are generated. We compute the number of packets sent per second.

Table 5: Results of overhead analysis experiments.

Qdisc Packets/s (4 leaves) Packets/s (128 leaves)
HLS 362240 241970
HTB 365590 226295
pfifo 358880 377945

• HLS scales slightly better than HTB.
• According to [2], classifying packets is the most significant contributor to overhead.
• By default, qdiscs cannot enqueue and dequeue at the same time.
• The overhead is not significant enough for the link data rates we use in OMNeT++ experiments.
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Backup Slides
HTB Borrowing Analysis

• Quantum values and priorities of leaf classes are equal.
• Maximum rate of all classes are set to 100 Mbps.
• Every leaf class is generating packets at a speed of 100 Mbps.
• Experiment was done in OMNeT++.

Figure 20: Hierarchy used in HTB borrowing analysis Experiment 1.
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Figure 21: Hierarchy used in HTB borrowing analysis Experiment 2.
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Backup Slides
HTB Borrowing Analysis

• Colored numbers under the nodes denote how much bandwidth that class borrowed from the corresponding ances-
tor.

• The guaranteed rate of inner node changed how root distributes bandwidth.
• This can lead to unintended and unpredictable bandwidth sharing.

Figure 22: Experiment 1 results
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Figure 23: Experiment 2 results
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Backup Slides
Delay and Jitter

Figure 24: Throughput

HLS HTB Scenario 1

HTB Scenario 2
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Backup Slides
Delay and Jitter

• Qdiscs by default and this OMNeT++ test has FIFO queues with packet size limit of 1000 in leaf classes.
• To minimize delay using UDP it might be beneficial to reduce queue size or use another qdisc as leaf queues.

Figure 25: End-to-end delay

HLS HTB Scenario 1 and 2
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