
Chair of Connected Mobility
TUM School of Computation, Information and Technology
Technical University of Munich

Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework
OMNeT++ Summit 2022

Atacan Iyidogan
advised by Marcin Bosk and Filip Rezabek

Thursday 3rd November, 2022

Chair of Connected Mobility
TUM School of Computation, Information and Technology

Technical University of Munich



Chair of Connected Mobility
TUM School of Computation, Information and Technology
Technical University of Munich

Content

Motivation

Research Questions

Background

Analysis

Implementation of HLS into OMNeT++/INET

Validation of HLS and HTB Against Linux

Experiments on OMNeT++

Conclusion

Bibliography

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 2



Motivation

• Scheduling algorithms determine the order of packets to dequeue from the queue.
• Hierarchical Token Bucket (HTB) [1] is a hierarchical scheduling algorithm that is in the stock Linux kernel since

2005.
• Hierarchical Link Sharing (HLS) [2] is a new hierarchical scheduling algorithm, implemented in Linux.
• Our goal is to compare HTB and HLS.
• An implementation of HTB into OMNeT++ simulator [3] already exists.
• We implement HLS into OMNeT++, then validate and compare HLS and HTB on OMNeT++.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 3



Research Questions

• How can HLS be implemented into OMNeT++ discrete event simulator?
• How well do HTB and HLS (hierarchical queuing structures) fit within OMNeT++ queuing structure?
• In what ways is HLS advantageous to use compared to HTB (bandwidth sharing, impact on delay, etc.)?

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 4



Background
Hierarchical Scheduling Algorithms

• Scheduling algorithms that are implemented into Linux kernel are called qdiscs.
• Qdiscs are split into two types: classless and classful.
• Packets arriving at classful qdiscs are filtered into one of the user-defined classes.
• Using these classes, users can control bandwidth sharing between classes.
• Using classes, a hierarchy can be realized.
• FIFO, fq_codel [4] are classless qdiscs, HLS and HTB are classful qdiscs.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 5



Background
Hierarchical Scheduling Algorithms

Qdisc htb

1:

Class
1:12


Class
1:13


Class
1:121


Class
1:122


Class
1:131


Class
1:132


Class
1:11


Class
1:1


Qdisc pfifo
 Qdisc pfifo
 Qdisc pfifo
 Qdisc pfifo
 Qdisc pfifo


Figure 1: Example classful qdisc hierarchy

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 6



Background
Hierarchical Link Sharing (HLS)

• Each class except root has a parameter called weight.
• Each node shares bandwidth to their children proportional to their weights.
• Each class has balance, number of bytes a class is allowed to transmit.
• Classes can be active or idle. An inner class is active if any of its descendants is active.
• HLS works in rounds, in each round balance is propagated from root to active leaf classes.
• Balance is consumed in leaf classes to transmit packets.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 7



Background
Hierarchical Link Sharing (HLS)

• Each class distributes its balance to its active chil-
dren, starting from top.

• The balance each child gets is proportional to their
weight (compared to their siblings).

root

A
3


C
3

C1
1




C2
2




C3
3


B
4


B1
1

B2
3

B = 5000

1500 15002000

B = 0 B = 0 B = 0

B = 0
 B = 0
 B = 0
 B = 0
 B = 0

Figure 2: HLS balance distribution

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 8



Background
Hierarchical Link Sharing (HLS)

• Each class distributes its balance to its active chil-
dren, starting from top.

• The balance each child gets is proportional to their
weight (compared to their siblings).

root

A
3


C
3

C1
1




C2
2




C3
3


B
4


B1
1

B2
3

B = 0

1500

B = 1500
 B = 0 B = 0


B = 500
 B = 1500
 B = 250
 B = 500
 B = 750

Figure 3: HLS balance distribution

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 9



Background
Hierarchical Link Sharing (HLS)

• After the distribution of balance, HLS cycles be-
tween each leaf class.

• Dequeues a packet if balance is bigger than next
packet byte size.

• Consumed balance is returned to root, to be distrib-
uted in the next round.

root

A
3


C
3

C1
1




C2
2




C3
3


B
4


B1
1

B2
3

B = 1000

1500

B = 500
 B = 0 B = 0


B = 500
 B = 1500
 B = 250
 B = 500
 B = 750

Figure 4: HLS balance distribution

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 10



Background
Hierarchical Token Bucket (HTB)

• Each class has parameters guaranteed rate and maximum rate.
• Leaf classes further have parameters priority and quantum value.
• Quantum value determines proportion of bandwidth a class will "borrow" from their ancestor.
• Classes have three modes depending on their current rate: can send (green), can borrow (yellow), and cannot send

(red).

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 11



Background
Hierarchical Token Bucket (HTB)

• HTB iterates through levels starting from bottom.
• Searches for active green classes with highest pri-

ority.
• If the found green class is a leaf, HTB simply de-

queues a packet from that leaf class.
• If there are multiple classes to pick from, HTB uti-

lizes a round-robin that consumes the quantum val-
ues to dequeue packets.

root

A

B C

B1 B2 C1 C2Level 0

Level 1

Level 2

Figure 5: Example HTB Hierarchy

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 12



Background
Hierarchical Token Bucket (HTB)

• If the found green class is a an inner class, HTB
picks a descendant leaf to "borrow" bandwidth to.

• The bandwidth a class gets from its ancestors will
be proportional to their quantum value, enforced
through a deficit round-robin.

root

A

B C

B1 B2 C1 C2Level 0

Level 1

Level 2

Figure 6: Example HTB Hierarchy

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 13



Analysis
Comparison of HLS and HTB

• Both are hierarchical scheduling algorithms.
• HTB has 4 different parameters that control throughput, HLS has only 1.
• HLS does not have a way to replicate the effects of priority and maximum rate parameters of HTB.
• In HLS, the rate a class achieves when every class is active can be thought as the guaranteed rate.
• Quantum values of HTB are by default proportional to their guaranteed rates. If set like this, they behave the similar

to weights in HLS.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 14



Analysis
Comparison of HLS and HTB

• HLS goes top-down while sharing bandwidth, so it is independent of condition of its subtrees.
• HTB sharing depends on which and how many descendant leaf classes are in yellow mode.
• In theory, HLS should have better class isolation. Excess bandwidth are contained in the subtrees.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 15



Analysis
Comparison of Linux and OMNeT++ Environment

• OMNeT++ clock does not include overhead generated by classifying and scheduling operations.
• The overhead is not significant enough to diverge results of OMNeT++ and Linux.
• By default OMNeT++ clock is a perfect simulated clock, does not have any clock drift.
• INET 4.4 introduced Time-Sensitive Networking (TSN) features, including device clocks.
• HTB OMNeT++ implementation uses normal simulation clock.
• HTB heavily uses clocks to regulate class modes, so drift can result in very minor differences.
• HLS is unaffected by clock drift.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 16



Implementation of HLS into OMNeT++/INET
Queuing in OMNeT++

• Queuing modules are active/passive packet sink/sources.
• Modules communicate using C++ method calls through gates.

Classifier
Queue 1

Queue 2

Scheduler

Push
packet

1

2 Classify
packet

Push
packet

3
4

Pull
packet

5 Select
queue

6
Pull

packet

7 Send
packet

Figure 7: Example flow of a queue with a classifier and scheduler in OMNeT++

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 17



Implementation of HLS into OMNeT++/INET
Design

An ideal implementation should have the following properties:

• Should work the same as the qdisc implementation.
• The implementation should be able to use the already available classifiers and queues in INET Framework.
• The leaf packet queue types should be freely selectable. Even HLS can be a leaf queue of itself.

We designed two modules:

• HLSScheduler: Implements HLS functionality, selects which queue to dequeue from for every packet pull request.
• HLSQueue: Combine classifier, queues and scheduler into one compound module.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 18



Implementation of HLS into OMNeT++/INET
HLSQueue

The implementation has the same structure as HTB OMNeT++ implementation [3].

CompoundPacketQueueBase queue

ContentBasedClassifier
classifier


PacketQueue
queue[numQueues]


HLSScheduler
scheduler
Upper Layer Network

Interface


Figure 8: Design of HLSQueue module

CompoundPacketQueueBase handles interaction with upper layer and network interface.

• Outgoing packets are forwarded to classifier.
• Pull packet request from network interface is forwarded to scheduler.
• Hierarchy is set up using an XML file.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 19



Validation of HLS and HTB Against Linux
Configuration of HTB/HLS Validation Experiments

• Packets are generated on "Packet Generator" so that the generation time does not affect the scheduling.
• Hardware experiments use iperf3 [5] for packet generation.
• OMNeT++ experiments use UdpBasicApp for packet generation.

Packet 
Generator
 Scheduler Sink

10 Gbps 1 Gbps

HLS or HTB is bound
to this interface

Figure 9: Configuration

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 20



Validation of HLS and HTB Against Linux
HLS Validation Test

Figure 10: Hierarchy of HLS validation test.

root

A
700


B
300


A1
300


A2
400


B2
200


B1
100


• Scheduler is set up on a 1 Gbps link.
• Classes should reach throughput in Mbps equal to their weights, i.e. A1→ 300 Mbps.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 21



Validation of HLS and HTB Against Linux
HLS Validation Test Results

Figure 11: HLS qdisc Figure 12: HLS OMNeT++

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 22



Validation of HLS and HTB Against Linux
HTB Validation Test

Figure 13: Hierarchy of HTB validation test.

• Guaranteed rate/Maximum rate in Mbps.
• Each flow should reach their guaranteed rate while not exceeding maximum rate.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 23



Validation of HLS and HTB Against Linux
HTB Validation Test Results

Figure 14: HTB qdisc Figure 15: HTB OMNeT++

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 24



Experiments on OMNeT++
Bandwidth Sharing Comparison

• Numbers in nodes correspond to weight for HLS and guaranteed rate in Mbps for HTB.
• Quantum values are proportional to guaranteed rates.
• Maximum rate of every node is equal to link rate.
• Red nodes denote idle nodes, green nodes denote active nodes.
• Every active leaf class is generating packets at a speed of 100 Mbps.

Figure 16: Hierarchy used in throughput comparison.

root
100

A
30


C
30


C1
5


C2
25


B
40


B1
10


B2
30


A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 25



Experiments on OMNeT++
Bandwidth Sharing Comparison

• Throughputs are the same before B2 becomes idle.
• When B2 becomes idle, the throughput of B does not change for HLS, does change for HTB.
• HTB shares the extra bandwidth with every leaf class, HLS gives all the extra bandwidth to B1.

Figure 17: HLS Throughput Figure 18: HTB Throughput

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 26



Experiments on OMNeT++
Delay During Congestion

• Experiment was done in OMNeT++.
• What happens to the delay of classes that send at or lower than their guaranteed rate during congestion?
• The experiment consists of 4 runs, in each only one of the classes is sending at lower than their guaranteed rate.

Table 1: End-to-end delay on delay during congestion experiment.

Classes HLS Mean (ms) HTB Mean (ms)
A1 1.94 2.37
A2 1.45 2.08
B1 1.48 4.07
B2 1.32 1.63

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 27



Experiments on OMNeT++
Jitter Comparison

• In each experiment, the same class achieves the same throughput.

Figure 19: Hierarchy used in HLS and HTB delay experiments.

root

A B

A1 A2 B2B1

Table 2: Weights used in HLS delay experiments.

Classes Weights
A 2
B 3

A1 1
A2 3
B1 1
B2 2

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 28



Experiments on OMNeT++
Jitter Comparison

• HTB has 2 scenarios:
• Scenario 1 does not involve borrowing, classes only achieve their guaranteed rates.
• Scenario 2 has low guaranteed rates, so that classes "borrow" a lot.

• Borrowing has an effect on jitter and delays while using HTB.

Table 3: HTB Scenario 1

Classes GR(Mbps) Quantum
root 100 -
A 40 -
B 60 -
A1 10 1500
A2 30 4500
B1 20 3000
B2 40 6000

Table 4: HTB Scenario 2

Classes GR(Mbps) Quantum
root 100 -
A 4 -
B 6 -
A1 1 1500
A2 3 4500
B1 2 3000
B2 4 6000

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 29



Experiments on OMNeT++
Jitter Comparison

Class A1 Class A2

Class B1 Class B2

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 30



Conclusion

• RQ: In what ways is HLS advantageous to use compared to HTB (bandwidth sharing, impact on delay, etc.)?
• HLS achieves class isolation better than HTB. The excess bandwidth from a leaf class in HLS is shared to leaf classes that

are as close as possible.
• The jitter resulting from HTB is higher than HLS.
• During congestion, the delay of well-behaving classes are lower in HLS compared to HTB.

• In future, using OMNeT++ implementation, a rate limiting feature can be added to HLS and then tested for rate
conformance and delay/jitter bounds.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 31



Bibliography

M. Devera, “Hierarchical token bucket,” http://luxik.cdi.cz/~devik/qos/htb/, 2003, accessed: 16/04/2022.

N. Luangsomboon and J. Liebeherr, “A round-robin packet scheduler for hierarchical max-min fairness,” 2021. [Online]. Available:
https://arxiv.org/abs/2108.09864

M. Bosk, M. Gajić, S. Schwarzmann, S. Lange, and T. Zinner, “Htbqueue: A hierarchical token bucket implementation for the
omnet++/inet framework,” 2021. [Online]. Available: https://arxiv.org/abs/2109.12879

“The flow queue codel packet scheduler and active queue management algorithm.” [Online]. Available: https://datatracker.ietf.org/
doc/html/rfc8290

“Iperf, a test tool for tcp, udp and sctp.” [Online]. Available: https://iperf.fr/

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 32

http://luxik.cdi.cz/~devik/qos/htb/
https://arxiv.org/abs/2108.09864
https://arxiv.org/abs/2109.12879
https://datatracker.ietf.org/doc/html/rfc8290
https://datatracker.ietf.org/doc/html/rfc8290
https://iperf.fr/


Backup Slides
Overhead Test

• OMNeT++ does not include scheduling overhead.
• The hierarchies are perfect binary trees.
• UDP packets of size 60 bytes are generated. We compute the number of packets sent per second.

Table 5: Results of overhead analysis experiments.

Qdisc Packets/s (4 leaves) Packets/s (128 leaves)
HLS 362240 241970
HTB 365590 226295
pfifo 358880 377945

• HLS scales slightly better than HTB.
• According to [2], classifying packets is the most significant contributor to overhead.
• By default, qdiscs cannot enqueue and dequeue at the same time.
• The overhead is not significant enough for the link data rates we use in OMNeT++ experiments.

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 33



Backup Slides
HTB Borrowing Analysis

• Quantum values and priorities of leaf classes are equal.
• Maximum rate of all classes are set to 100 Mbps.
• Every leaf class is generating packets at a speed of 100 Mbps.
• Experiment was done in OMNeT++.

Figure 20: Hierarchy used in HTB borrowing analysis Experiment 1.

root
100


B
10


B1
4


B2
6


A
6


A1
2


A2
4


Figure 21: Hierarchy used in HTB borrowing analysis Experiment 2.

root
100


B
10


B1
4


B2
6


A
50


A1
2


A2
4


A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 34



Backup Slides
HTB Borrowing Analysis

• Colored numbers under the nodes denote how much bandwidth that class borrowed from the corresponding ances-
tor.

• The guaranteed rate of inner node changed how root distributes bandwidth.
• This can lead to unintended and unpredictable bandwidth sharing.

Figure 22: Experiment 1 results

root
100


A
6

B
10

A1
2

22.72


A2
4

24.71


B2
6


26.72


B1
4


24.71

2/0/20.72 4/0/20.71 4/0/20.71 6/0/20.72

Figure 23: Experiment 2 results

root
100


A
50


B
10

A1
2

32.04


A2
4

34.04


B2
6


17.37


B1
4


15.43

2/22/8.04 4/22/8.04 4/0/11.43 6/0/11.37

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 35



Backup Slides
Delay and Jitter

Figure 24: Throughput

HLS HTB Scenario 1

HTB Scenario 2
A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 36



Backup Slides
Delay and Jitter

• Qdiscs by default and this OMNeT++ test has FIFO queues with packet size limit of 1000 in leaf classes.
• To minimize delay using UDP it might be beneficial to reduce queue size or use another qdisc as leaf queues.

Figure 25: End-to-end delay

HLS HTB Scenario 1 and 2

A. Iyidogan — Hierarchical Resource Sharing and Queuing in OMNeT++ and INET Framework 37


	Motivation
	Research Questions
	Background
	Analysis
	Implementation of HLS into OMNeT++/INET
	Validation of HLS and HTB Against Linux
	Experiments on OMNeT++
	Conclusion
	Bibliography
	Backup Slides

