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The beginnings



Problem statement

Main goal: 

Improve speed of current wifi error models

while maintaining the baseline accuracy.



SNIRs, Error model, PER

SNIR (input):  Commonly used in wireless communication as 
a way to measure the quality of wireless connections

Error model (what we enhancing):  Describes how the 
SNIR affects the amount of errors at the receiver.

Packet Error Rate (output): is used to test the performance 
of a receiver. PER is the ratio, in percent, of the number of 
Test Packets not successfully received by the receiver.



Problem statement

Models we going to mention:
- Scalar Radio Model

- Analytical formulas
- Based on single SNIR values
- fast but still inaccurate

- Layered Radio Model (baseline)
- Based on the whole SNIR pattern
- Slow but can be trusted as a baseline measurement in this study

(lack of empirical data)

- Neural network approach
- Can be quite accurate.
- Can achieve very fast inference speeds.
- Can generalize for different wifi modes.  
- Can take into account the whole SNIR pattern by design



Problem statement

Layered model
Training Dataset: 
SNIR patterns ←→  packetError 
values

Training

Network 
weights

Neural Network

Trade-off:
- Much faster computation 

compared to layered model

- Cannot be more accurate then 
layered model (only converge to it)

Based on OMNET++ presentation:
https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf

Existing OMNeT++ 
pipeline

https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf


Motivation: trade-off

Accuracy

Computation 
time

Scalar Radio 
Model

Layered Radio 
Model

Neural 
Network



Exploring the data

Raw data: SNIR values corresponding to a 
packetError value. Borrowed from OMNET++ presentation:

https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf

https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf


Exploring the data 

Conjecture: if the humans can recognize relationships between packet error values and 
the SNIR patterns, there is a great chance that neural network can do also and even doing 
better.

Increasing packet error values

PER: 0 PER: 0.01 PER: 0.1
PER: 0.33

PER: 1.0



Exploring the data

Conjecture: if humans can recognize relationships between packet error values and the 
SNIR patterns, there is a great chance that neural network can do also and even doing 
better.

Try yourself!

colab-notebook demo
Interactive 3D clustering demo:

https://skfb.ly/ozB6B

https://drive.google.com/file/d/1HonPcua9AyBRvt-qh60TTh2Ynff-TrOl/view?usp=sharing
https://skfb.ly/ozB6B


Methods we tried

           Convolutional Neural Networks                                                                                                                              

expectations:
- compatible with different input sizes
- excellent in image like pattern recognition
- limitation: limited long range interactions in the data

reality:
- in this particular case it worked but it was very hard to achieve 
good accuracy
- it was not as robust as we thought for architectural changes
- it was hard to tune and train it with this data
- it generalized poorly

    



Methods we tried

      XGBOOST   
                                                                                                                        

expectations:
- SOTA in tabular data inference
- fast and generalizes exceptionally 
- limitation: input can be fixed size data only

reality:
-for fixed size SNIR matrices it achieved very good 
accuracy and generalized well, but we needed it to 
work for variable SNIR sizes, so we just could not use 
it.

    



Methods we tried

  LSTM         
                                                                                                                

expectations:
- recognizing  long range interaction in data
- excellent for time dependent data
- excellent for variable data size
- limitation: longer training times due to more sequential 
structure

reality: it satisfied all of our expectations
    



LSTM network and settings 
which worked

Model configuration and topology:

Lightweight, and fast

Input: 

input size:
timeDivision X frequencyDivision (fixed)
(it was fixed in the data as well…)

batched input -> batch size as hyperparameter

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 lstm (LSTM)                 (None, None, 64)          29952     
                                                                 
 lstm_1 (LSTM)               (None, 64)                33024     
                                                                 
 dense (Dense)               (None, 10)                650       
                                                                 
 dense_1 (Dense)             (None, 5)                 55        
                                                                 
 dense_2 (Dense)             (None, 1)                 6         
                                                                 
=================================================================
Total params: 63,687
Trainable params: 63,687
Non-trainable params: 0
_________________________________________________________________

timeDiv
frequencyDiv



LSTM network and settings which worked

Conjecture:

LSTM-s are designed for recognizing patterns which are “far from 
each other”, e.g. time series data points distant from each other 
with respect to time, SNIR values can be distant in frequency…

Example for our conjecture in the study of long-range amino acid interaction 
inference:
https://academic.oup.com/bioinformatics/article/33/18/2842/3738544

CNN locality by design:
https://abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-nutshell
-89f81a329ec3 -> “The reason why CNN is best at image classification” section

https://academic.oup.com/bioinformatics/article/33/18/2842/3738544
https://abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3
https://abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3


Neural Network integration to existing pipeline

Training

Network 
weights

Neural Network

Existing OMNeT++ 
pipeline



Results

Training on 160.000 lines, 

● Split the data. 80% training, 20% testing.
● We place the data into batches with identical timeDivision.
● We transform the data to have a list with shapes of 

batch_size x timeDivision x frequencyDivision.

Predicted vs Target 
values:

RMSE: 0.059539
Corr coeff: 0.9893

Target and predicted value distributions are very similar. Predicted values plotted in the function 
of target values.



Results

The closer the points to the green ones, “the better”, due to the lack of 
experimental data….

Increasing noise (Noise duration x Noise Power [us x mW])

Scalar Radio model

Neural Network

Layered Radio Model



Results

Comparing the 

Scalar Radio Model (blue) and
Neural Network approach (orange) to 
the Layered Radio Model (green).

Comparison with respect of 
computational time.



Results: trade-off is fulfilled

Neural network approach is in 
agreement with the simulated baseline

Neural Network approach can be orders 
of magnitude faster.



Conclusion

The novel neural network approach in agreement with the Layered Radio model 
baseline, while it has a significant speed up in computation time, especially when 
the packet length is large.

With the frugally-deep environment, our Keras-python implementation is 
compatible to the existing OMNET++ ecosystem, making this project potentially 
valuable for future studies and relevant use cases.

In the future we are planning to continue the collaboration and expand our model 
to generalize to multiple WIFI modes as for now it is only compatible with a 
single specific mode.



Tools used

Creating the architecture, train, inference

Omnet++ team integrated our model with it to their 
pipeline

Data visualization, showcasing, data management.



Thank you
Check out our other projects: www.chimeramultimedia.com

Follow us on Twitter, Instagram, LinkedIn, YouTube, join our Discord:

 www.chimeramultimedia.com/contact

https://www.chimeramultimedia.com
https://www.chimeramultimedia.com/contact

