Inference of packet-error
rates using SNIR patterns via
neural networks

Chimera Solutions
in partnership with OMNeT++ Team

The beginnings

Future...?

e Someone knowledgeable about neural networks could
produce great results in a short time

e Proposal article:
https://docs.omnetpp.org/articles/neuralnet-errormodels/

e Posted on Reddit:
https://www.reddit.com/r/deeplearning/comments/fgb9yb/r
equest for_advice on_neural_network_architecture/

JAhimera

Multimedia & Solutions

Problem statement

Main goal:

Improve speed of current wifi error models

while maintaining the baseline accuracy.

SNIRs, Error model, PER

SNIR (input): Commonly used in wireless communication as
a way to measure the quality of wireless connections

Error model (what we enhancing): Describes how the
SNIR affects the amount of errors at the receiver.

Packet Error Rate (output): is used to test the performance
of a receiver. PER is the ratio, in percent, of the number of
Test Packets not successfully received by the receiver.

Problem statement

Models we going to mention: D

- Scalar Radio Model H N
- Analytical formulas o 0
- Based on single SNIR values

- fast but still inaccurate
- Layered Radio Model (baseline) /i

- Based on the whole SNIR pattern {
- Slow but can be trusted as a baseline measurement in this study
(lack of empirical data)

Can be quite accurate.

Can achieve very fast inference speeds.

Can generalize for different wifi modes.

Can take into account the whole SNIR pattern by design

Problem statement

‘ Training Dataset: %
=S | SNIRpatterns —— packetError Neural Network
values |
1]
Trade-off: v

- Much faster computation _§3

compared to layered model

1
Cannot be more accurate then v
layered model (only converge to it) = =

Based on OMNET++ presentation:
https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf

https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf

Motivation: trade-off

A

Layered Radio
Model

Accuracy

Scalar Radio
Model

|57} t&l ysmwed
S5

Computation
time

= >

Exploring the data

packetError timeDivision frequencyDivision SNIR 0 SNIR_1 SNIR_.2 SNIR.3 SNIR 4 SNIRS5 SNIR_6

0 0.42 8 52 4539570 35.49330 40.84400 39.25960 37.55480 29.89270 41.27730
1 0.00 8 52 9251780 92.20220 49.82480 50.40600 42.85030 40.73410 55.60380
2 0.01 8 52 76.55170 66.73260 37.70400 46.79620 82.01770 67.10550 50.40940
3 1.00 8 52 520857 4.90663 544037 6.72079 517013 5.50500 6.15690
4 0.00 8 52 58.82130 59.34190 96.12950 82.14270 48.66300 53.52890 45.76900
9995 1.00 8 52 3.69903 3.27762 276811 3.39221 6.55110 6.06512 7.43496
9996 0.17 8 52 46.08240 52.59990 59.25980 61.08370 71.71310 68.08100 44.40600
9997 0.49 8 52 4220150 50.46780 54.03000 47.05220 43.58100 42.52460 53.61060
9998 0.71 8 52 66.20530 90.01320 76.54620 72.24160 61.60140 78.36080 145.99600
9999 0.76 8 52 11.31480 6.43079 6.38891 946025 852136 7.24323 6.70294

10000 rows x 419 columns

Raw data: SNIR values corresponding to a
packetError value.

IFFT

Concatenated
OFDM Symbols

‘/—) FFT

FFT Bins
=1 OFDM Sy

Frequency

O Packet Error Rate

Borrowed from OMNET++ presentation:
https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf

https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf

Exploring the data

Conjecture: if the humans can recognize relationships between packet error values and
the SNIR patterns, there is a great chance that neural network can do also and even doing
better. PER: 1.0

PER: 0.33

PER: 0.01 PER: 0.1

Increasing packet error values

Exploring the data

Conjecture: if humans can recognize relationships between packet error values and the
SNIR patterns, there is a great chance that neural network can do also and even doing
better.

Try yourself!

Interactive 3D clustering demo:

https://drive.google.com/file/d/1HonPcua9AyBRvt-qh60TTh2Ynff-TrOl/view?usp=sharing
https://skfb.ly/ozB6B

Methods we tried

Convolutional Neural Networks

expectations:

- compatible with different input sizes

- excellent in image like pattern recognition

- limitation: limited long range interactions in the data

reality:

- in this particular case it worked but it was very hard to achieve
good accuracy

- it was not as robust as we thought for architectural changes

- it was hard to tune and train it with this data

- it generalized poorly

75

80

80 | 80

Packet Frror Rate: 0.31

75

80

80 | 80

70

—

75

80

80

Methods we tried

XGBOOST

expectations:

- SOTA in tabular data inference

- fast and generalizes exceptionally

- limitation: input can be fixed size data only

reality:
-for fixed size SNIR matrices it achieved very good
accuracy and generalized well, but we needed it to

work for variable SNIR sizes, so we just could not use
it.

Packet Error Rate: 0.31

Methods we tried

LSTM

expectations:

- recognizing long range interaction in data
- excellent for time dependent data

- excellent for variable data size

- limitation: longer training times due to more sequential
structure

reality: it satisfied all of our expectations

LSTM network and settings
which worked

Model configuration and topology: P
[_Ightwelght’ and fast Layer (type) Output Shape Param #
(LSTM)
Input:

frequencyDiv Laitny o (L) (None,

dense (Dense) (None,

dense 1 (Dense) (None,

dense 2 (Dense)

Tot ar 3
e, 20 Trainable params: 63,687
input Size: Non-trainable params: O

timeDivision X frequencyDivision (fixed)
(it was fixed in the data as well...)

batched input -> batch size as hyperparameter

)

LSTM network and settings which worked

Conjecture:

LSTM-s are designed for recognizing patterns which are “far from
each other”, e.g. time series data points distant from each other
with respect to time, SNIR values can be distant in frequency...

Example for our conjecture in the study of long-range amino acid interaction
inference:

CNN locality by design:

-> “The reason why CNN is best at image classification” section

https://academic.oup.com/bioinformatics/article/33/18/2842/3738544
https://abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3
https://abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3

()

Neural Network integration to existing pipeline

OMNET ++

K- [eIC-

.predict

frugally-deep

Results

Training on 160.000 lines,

1750

1500

1250

1000

750

500

250

0

00

Split the data. 80% training, 20% testing.

We place the data into batches with identical timeDivision.
We transform the data to have a list with shapes of
batch_size x timeDivision x frequencyDivision.

2000 .
Target VS Predicted PacketErrorRate
1750 10
1500
08
1250
- 06
1000 g
]
750 & 04
500
02
250
° 0.0
02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Target data Predicted data Target
Target and predicted value distributions are very similar. Predicted values plotted in the function

of target values.

Predicted vs Target
values:

RMSE: 0.059539
Corr coeff: 0.9893

120

100

80

%

60

Results

The closer the points to the green ones, “the better”, due to the lack of

experimental data....

Noise duration: 2 us, noise power: 1 mW
Received Packets vs Number of Noise Sources

—e— configname=DimensionalPacketlevel
—a— configname=| work
—e— configname=DimensionalSymbollevel
= v =)
10 12 14 16 18 20

120 4

100

80

40 4

204

Noise duration: 6 us, noise power: 1 mW
Received Packets vs Number of Noise Sources

Noise duration: 8 us, noise power: 2 mW
Received Packets vs Number of Noise Sources

60 4

- ketlevel - ketlevel
-« k - k
- - «

————— ——]

10 12 14 16 18 20 10 12 14 16 18 20

120 4

100 4

80

40 4

204

Scalar Radio model

Layered Radio Model

Noise duration: 16 us, noise power: 2 mW
Received Packets vs Number of Noise Sources

——
—— C

ketlevel

—e— C

Increasing noise (Noise duration x Noise Power [us x mW])

Results

1 —— Dimension packet level runtime
Comparlng the 00 e Dimension packet level Neural Network runtime /
—— Dimension symbol level runtime
Scalar Radio Model (blue) and 2500 -
Neural Network approach (orange) to ~ _ .|
the Layered Radio Model (green). £
£ 1500
&

Comparison with respect of e _

computational time. i

200 400 600 800 1000 1200
messagelLength

Results: trade-off 1s fulfilled

I
Dimension symbol level vs. Dimesnion Packet Level NeuralNet Dimension symbol level vs. Dimesnion Packet Level NeuralNet
3200 - - 0.100 3200
2520
2160
1944 - 0.075 -12
1728
1536
1344 0.0307
1176 £ 10
1008 0.025 %
o 900 < © a
£ 784 g = 8 3
s 672 0.000 ¢ = @
b 576 ‘v B &
e 500 g 2 6 %
400 —0.025 g
324 ES
256 a
200 —0.050 4
160 A
112
80 —0.075) >
48 Neural Layeret:iRIadlo
Model
24 ~0.100 Network y . ; T i 1
128 256 384 512 640 768 896 1024 1152 1280 Accuracy] £ 128 256 384 512 640 768 896 1024 1152 1280
messagelLength — messagelLength
Scalar Radio
Model

Neural network approach is in Neural Network approach can be orders
agreement with the simulated baseline computaton of magnitude faster.

time

Conclusion

The novel neural network approach in agreement with the Layered Radio model
baseline, while it has a significant speed up in computation time, especially when
the packet length is large.

With the frugally-deep environment, our Keras-python implementation is
compatible to the existing OMNET++ ecosystem, making this project potentially
valuable for future studies and relevant use cases.

In the future we are planning to continue the collaboration and expand our model
to generalize to multiple WIFI modes as for now it is only compatible with a
single specific mode.

)

Tools used

|:!| pandas =
' jupyter
matp [~ tlib ‘v

Data visualization, showcasing, data management.

frugally-deep
Omnet++ team integrated our model with it to their
pipeline

Thank you

Check out our other projects:

Follow us on Twitter, Instagram, LinkedIn, YouTube, join our Discord:

Jhimera

Multimedia & Solutions

https://www.chimeramultimedia.com
https://www.chimeramultimedia.com/contact

