
Inference of packet-error
rates using SNIR patterns via

neural networks
Chimera Solutions

in partnership with OMNeT++ Team

The beginnings

Problem statement

Main goal:

Improve speed of current wifi error models

while maintaining the baseline accuracy.

SNIRs, Error model, PER

SNIR (input): Commonly used in wireless communication as
a way to measure the quality of wireless connections

Error model (what we enhancing): Describes how the
SNIR affects the amount of errors at the receiver.

Packet Error Rate (output): is used to test the performance
of a receiver. PER is the ratio, in percent, of the number of
Test Packets not successfully received by the receiver.

Problem statement

Models we going to mention:
- Scalar Radio Model

- Analytical formulas
- Based on single SNIR values
- fast but still inaccurate

- Layered Radio Model (baseline)
- Based on the whole SNIR pattern
- Slow but can be trusted as a baseline measurement in this study

(lack of empirical data)

- Neural network approach
- Can be quite accurate.
- Can achieve very fast inference speeds.
- Can generalize for different wifi modes.
- Can take into account the whole SNIR pattern by design

Problem statement

Layered model
Training Dataset:
SNIR patterns ←→ packetError
values

Training

Network
weights

Neural Network

Trade-off:
- Much faster computation

compared to layered model

- Cannot be more accurate then
layered model (only converge to it)

Based on OMNET++ presentation:
https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf

Existing OMNeT++
pipeline

https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf

Motivation: trade-off

Accuracy

Computation
time

Scalar Radio
Model

Layered Radio
Model

Neural
Network

Exploring the data

Raw data: SNIR values corresponding to a
packetError value. Borrowed from OMNET++ presentation:

https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf

https://summit.omnetpp.org/archive/2020/assets/pdf/neural-errormodel-prez.pdf

Exploring the data

Conjecture: if the humans can recognize relationships between packet error values and
the SNIR patterns, there is a great chance that neural network can do also and even doing
better.

Increasing packet error values

PER: 0 PER: 0.01 PER: 0.1
PER: 0.33

PER: 1.0

Exploring the data

Conjecture: if humans can recognize relationships between packet error values and the
SNIR patterns, there is a great chance that neural network can do also and even doing
better.

Try yourself!

colab-notebook demo
Interactive 3D clustering demo:

https://skfb.ly/ozB6B

https://drive.google.com/file/d/1HonPcua9AyBRvt-qh60TTh2Ynff-TrOl/view?usp=sharing
https://skfb.ly/ozB6B

Methods we tried

 Convolutional Neural Networks

expectations:
- compatible with different input sizes
- excellent in image like pattern recognition
- limitation: limited long range interactions in the data

reality:
- in this particular case it worked but it was very hard to achieve
good accuracy
- it was not as robust as we thought for architectural changes
- it was hard to tune and train it with this data
- it generalized poorly

Methods we tried

 XGBOOST

expectations:
- SOTA in tabular data inference
- fast and generalizes exceptionally
- limitation: input can be fixed size data only

reality:
-for fixed size SNIR matrices it achieved very good
accuracy and generalized well, but we needed it to
work for variable SNIR sizes, so we just could not use
it.

Methods we tried

 LSTM

expectations:
- recognizing long range interaction in data
- excellent for time dependent data
- excellent for variable data size
- limitation: longer training times due to more sequential
structure

reality: it satisfied all of our expectations

LSTM network and settings
which worked

Model configuration and topology:

Lightweight, and fast

Input:

input size:
timeDivision X frequencyDivision (fixed)
(it was fixed in the data as well…)

batched input -> batch size as hyperparameter

Model: "sequential"

 Layer (type) Output Shape Param #
===
 lstm (LSTM) (None, None, 64) 29952

 lstm_1 (LSTM) (None, 64) 33024

 dense (Dense) (None, 10) 650

 dense_1 (Dense) (None, 5) 55

 dense_2 (Dense) (None, 1) 6

===
Total params: 63,687
Trainable params: 63,687
Non-trainable params: 0

timeDiv
frequencyDiv

LSTM network and settings which worked

Conjecture:

LSTM-s are designed for recognizing patterns which are “far from
each other”, e.g. time series data points distant from each other
with respect to time, SNIR values can be distant in frequency…

Example for our conjecture in the study of long-range amino acid interaction
inference:
https://academic.oup.com/bioinformatics/article/33/18/2842/3738544

CNN locality by design:
https://abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-nutshell
-89f81a329ec3 -> “The reason why CNN is best at image classification” section

https://academic.oup.com/bioinformatics/article/33/18/2842/3738544
https://abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3
https://abenezer-g.medium.com/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3

Neural Network integration to existing pipeline

Training

Network
weights

Neural Network

Existing OMNeT++
pipeline

Results

Training on 160.000 lines,

● Split the data. 80% training, 20% testing.
● We place the data into batches with identical timeDivision.
● We transform the data to have a list with shapes of

batch_size x timeDivision x frequencyDivision.

Predicted vs Target
values:

RMSE: 0.059539
Corr coeff: 0.9893

Target and predicted value distributions are very similar. Predicted values plotted in the function
of target values.

Results

The closer the points to the green ones, “the better”, due to the lack of
experimental data….

Increasing noise (Noise duration x Noise Power [us x mW])

Scalar Radio model

Neural Network

Layered Radio Model

Results

Comparing the

Scalar Radio Model (blue) and
Neural Network approach (orange) to
the Layered Radio Model (green).

Comparison with respect of
computational time.

Results: trade-off is fulfilled

Neural network approach is in
agreement with the simulated baseline

Neural Network approach can be orders
of magnitude faster.

Conclusion

The novel neural network approach in agreement with the Layered Radio model
baseline, while it has a significant speed up in computation time, especially when
the packet length is large.

With the frugally-deep environment, our Keras-python implementation is
compatible to the existing OMNET++ ecosystem, making this project potentially
valuable for future studies and relevant use cases.

In the future we are planning to continue the collaboration and expand our model
to generalize to multiple WIFI modes as for now it is only compatible with a
single specific mode.

Tools used

Creating the architecture, train, inference

Omnet++ team integrated our model with it to their
pipeline

Data visualization, showcasing, data management.

Thank you
Check out our other projects: www.chimeramultimedia.com

Follow us on Twitter, Instagram, LinkedIn, YouTube, join our Discord:

 www.chimeramultimedia.com/contact

https://www.chimeramultimedia.com
https://www.chimeramultimedia.com/contact

