
OMNeT++ Community Virtual Summit – November 2-3, 2022

OMNeT++ Goes Python

András Varga
andras@omnetpp.org

OMNeT++ Core Team

OMNeT++ Community Virtual Summit – November 2-3, 2022

Introduction

• After finishing OMNeT++ 6.0...

• We started playing around with Python because we saw huge

potentials there

– enthused by the Python-powered Analysis Tool

– during INET development and maintenance, a Python REPL with a home-grown lib has

grown to be an indispensable tool

– discovered the cppyy C++ FFI Python package

OMNeT++ Community Virtual Summit – November 2-3, 2022

(Snapshot from the office)

OMNeT++ Community Virtual Summit – November 2-3, 2022

Areas where Python can be useful

• Setting up models (e.g. topology building)

• Extending the capabilities of NED expressions

• Implementing simulation-specific ad-hoc components (e.g. scenario managers,

custom traffic generators, etc.)

• Simulation control (e.g. custom stop conditions)

• Managing and running simulations and simulation campaigns (workflow automation)

• Result analysis (inside and outside of the IDE)

• Disadvantages of Python in OMNeT++
– speed (or lack thereof)

• you want to keep Python code out of the “hot” parts of the model

– the word “module” has become ambiguous
• do you mean “importable Python file”, or “OMNeT++ simulation component”? ;-)

OMNeT++ Community Virtual Summit – November 2-3, 2022

Upcoming Python-related tools

• Python in NED expressions
– pyeval() and pycode() NED functions

• Modules implemented in Python
– @pythonClass NED property

– modules can be written from scratch, or subclassed

from existing (e.g. INET) modules

• Simulation library as a Python package
– from omnetpp.runtime import *
– based on cppyy

• Python package for processing simulation results
– from omnetpp.scave import results, ...

• Python package for managing and running simulations
– from omnetpp.simulation import *

OMNeT++ Community Virtual Summit – November 2-3, 2022

The pyeval(), pycode() NED functions

• pyeval(<expr>,...) - evaluates a Python expression string
– pyeval("2*3")
– pyeval("x: 2*x", 3) --> 6

• pycode(<block>,...) - evaluates a Python statement block
– block must end in a "return" statement (like a function body)

– pycode("import math; return math.factorial(15)")
– pycode("a,b: import math\nif a<0 or b<0: return math.nan\nreturn math.gcd(a,b)",

 70, 62)

More details about pyeval()/pycode(), @pythonClass and cppyy in

Attila Török’s Summit presentation: Using Python within Simulations

OMNeT++ Community Virtual Summit – November 2-3, 2022

The @pythonClass NED property

• Denotes that module is implemented by a Python class

// sink.ned
simple Sink {
 parameters:
 @pythonClass;
 ...
}

sink.py
from omnetpp.runtime import *

class Sink(omnetpp.cSimpleModule):
 def handleMessage(self, msg):
 ...

OMNeT++ Community Virtual Summit – November 2-3, 2022

The cppyy package

• Dynamic runtime Python bindings for C++
– allows cross-inheritance and callbacks, template instantiation and more

– simple example:

import cppyy
cppyy.include("iostream")
cppyy.cppdef("""class A { public: void sayHello() { std::cout << "Hello" << std::endl; } };""")
A = cppyy.gbl.A
a = A()
a.sayHello() # prints “Hello”

• Foundations:
– Cling, the interactive C++ interpreter from CERN

– Cling itself builds on Clang and LLVM
– (at least this is what they want you to believe, but actually it relies on magic)

OMNeT++ Community Virtual Summit – November 2-3, 2022

The omnetpp.runtime package

• Based on cppyy, it exposes the simulation library as a Python package
– both simulation kernel and the “envir” infrastructure

– its essence:
import cppyy
cppyy.include("omnetpp.h")

• OMNeT++ is undergoing extensive refactoring:
– Reusability of “envir” part improved

– Python readiness

– Multi-thread support
• Allow multiple threads to be used for simulation (but simulations are still single-threaded!)

./aloha -u Cmdenv --cmdenv-num-threads=8 ...
• Global variables became thread_local or simulation-scope (cSimulation::getSharedVariable<T>(name) - new)

OMNeT++ Community Virtual Summit – November 2-3, 2022

The omnetpp.scave package

• Part of OMNeT++ 6.0

Slide from last year’s Summit

OMNeT++ Community Virtual Summit – November 2-3, 2022

The omnetpp.simulation package

• Library and toolset for managing and running simulations and campaigns in

various ways
– in-process / local / distributed (e.g. ssh cluster using Dask)

– for results, for regression testing (e.g. fingerprints), etc.

• Grown from the needs of INET development and maintenance
– “run all simulations, utilizing all computing resources I have access to”

– “refresh list of simulations to be fingerprint-tested”

– “re-run failing fingerprint tests”

– “re-run simulations that contain WiFi” (after WiFi model change)

– “compare results to those with INET version X”

• Human time is expensive:
– automate/assist as much as possible (high-level tools, REPL, etc)

– store instead of recompute (fingerprints, simulation results, etc)

– utilize available computing resources (multi-core, ssh cluster, etc)

OMNeT++ Community Virtual Summit – November 2-3, 2022

DEMO

OMNeT++ Community Virtual Summit – November 2-3, 2022

Recap of the Demo

Python added to several OMNeT++ sample simulations:

• pyfifo: pure Python simple modules

• routing: various examples for making use of Python

• aloha: examples for running simulations from Python

To try, use the OMNeT++ version at the following URL:
https://drive.google.com/file/d/1jDD-vtzi9YVzShrw2fP6q1SUU5VMVsDM/view?usp=share_link

OMNeT++ Community Virtual Summit – November 2-3, 2022

samples/pyfifo

• A fairly verbatim re-implementation of the fifo example

• With all modules written in Python

OMNeT++ Community Virtual Summit – November 2-3, 2022

samples/routing

Configurations in omnetpp.ini:
• [FromCsv]: Setting up a network specified in CSV, using Python

• [RandomTree]: Setting up a network generated with NetworkX Python package

• [DumbbellFaultyLink]: Shows a scenario manager written in Python

• [AppExt]: Extending a C++ simple module from Python

• [App2]: Parameter values produced using pyeval()/pycode()

OMNeT++ Community Virtual Summit – November 2-3, 2022

samples/aloha

Python scripts:

• example1.py: instantiating a simulation
simulation = omnetpp.cSimulation(...)

• example2.py: all simulations in an omnetpp.ini parameter study
ini.getNumRunsInConfig("PureAlohaExperiment")

• example3.py: manually organizing a parameter study
for numHosts in [10,15,20]:
 for iaMean in [1,2,3,4,5,7,9]:
 ...

• example4.py: utilizing multiple CPU cores
with multiprocessing.Pool() as p:
 p.map(alohaJob, taskList)

• example5.py: simulation-based optimization
scipy.optimize.minimize(...)

• example5a.py: preserve and also plot all simulations

OMNeT++ Community Virtual Summit – November 2-3, 2022

Questions?

17

	1 - OMNeT++ Goes Python
	2 - Introduction
	3 - (Snapshot from the office)
	4 - Areas where Python can be useful
	5 - Upcoming Python-related tools
	6 - The pyeval(), pycode() NED functions
	7 - The @pythonClass NED property
	8 - The cppyy package
	9 - The omnetpp.runtime package
	10 - The omnetpp.scave package
	11 - The omnetpp.simulation package
	12 - DEMO
	13 - Recap of the Demo
	14 - samples/pyfifo
	15 - samples/routing
	16 - samples/aloha
	17 - Slide17

