OMNeT++ Goes Python

Andras Varga

andras@omnetpp.org
OMNeT++ Core Team

OMNeT++ Community Virtual Summit — November 2-3, 2022

Introduction

« After finishing OMNeT++ 6.0...

« We started playing around with Python because we saw huge
potentials there

enthused by the Python-powered Analysis Tool
during INET development and maintenance, a Python REPL with a home-grown lib has
grown to be an indispensable tool

discovered the cppyy C++ FFI Python package

OMNeT++ Community Virtual Summit — November 2-3, 2022

(Snapshot from the office)

OMNeT++ Community Virtual Summit — November 2-3, 2022

Areas where Python can be useful

Setting up models (e.g. topology building)
Extending the capabilities of NED expressions

Implementing simulation-specific ad-hoc components (e.g. scenario managers,
custom traffic generators, etc.)

Simulation control (e.g. custom stop conditions)
Managing and running simulations and simulation campaigns (workflow automation)
Result analysis (inside and outside of the IDE)

Disadvantages of Python in OMNeT++
— speed (or lack thereof)
you want to keep Python code out of the “hot” parts of the model
— the word “module” has become ambiguous
do you mean “importable Python file”, or “OMNeT++ simulation component”? ;-)

OMNeT++ Community Virtual Summit — November 2-3, 2022

Upcoming Python-related tools

Python in NED expressions
- pyeval() and pycode() NED functions
Modules implemented in Python
- @pythonClass NED property
— modules can be written from scratch, or subclassed
from existing (e.g. INET) modules
Simulation library as a Python package .
- from omnetpp.runtime import * . R N
— based on cppyy De:il::‘:;‘::ge :
Python package for processing simulation results
- from omnetpp.scave import results, ...
Python package for managing and running simulations
- from omnetpp.simulation import *

OMNeT++ Community Virtual Summit — November 2-3, 2022

The pyeval(), pycode() NED functions

* pyeval(<expr>,...) - evaluates a Python expression string
- pyeval("2*3")
- pyeval("x: 2#*x", 3) --> 6

 pycode(<block>,...) - evaluates a Python statement block
— block must end in a "return" statement (like a function body)
- pycode("import math; return math.factorial(15)")
- pycode("a,b: import math\nif a<0 or b<0: return math.nan\nreturn math.gcd(a,b)",
70, 62)

More details about pyeval()/pycode(), @pythonClass and cppyy in
Attila Torok’s Summit presentation: Using Python within Simulations

OMNeT++ Community Virtual Summit — November 2-3, 2022

The @pythonClass NED property

* Denotes that module is implemented by a Python class

// sink.ned
simple Sink {
parameters:
@pythonClass;

}

sink.py
from omnetpp.runtime import *

class Sink(omnetpp.cSimpleModule):
def handleMessage(self, msg):

OMNeT++ Community Virtual Summit — November 2-3, 2022

The cppyy package

Dynamic runtime Python bindings for C++
— allows cross-inheritance and callbacks, template instantiation and more
— simple example:

import cppyy
cppyy.include("iostream")

cppyy.cppdef("""class A { public: void sayHello() { std::cout << "Hello" << std::endl; } };""")
A = cppyy.gbl.A

a =AQ0)

a.sayHello() # prints “Hello”

Foundations:
— Cling, the interactive C++ interpreter from CERN
— Cling itself builds on Clang and LLVM

— (atleast this is what they want you to believe, but actually it relies on magic)

OMNeT++ Community Virtual Summit — November 2-3, 2022

The omnetpp.runtime package

« Based on cppyy, it exposes the simulation library as a Python package
— both simulation kernel and the “envir” infrastructure
— its essence:

import cppyy
cppyy.include("omnetpp.h")

« OMNeT++ is undergoing extensive refactoring:
— Reusability of “envir” part improved
— Python readiness
— Multi-thread support
Allow multiple threads to be used for simulation (but simulations are still single-threaded!)
./aloha -u Cmdenv --cmdenv-num-threads=8 ...
Global variables became thread_local or simulation-scope (csinulation: :getSharedvariable<T>(name) - NEW)

OMNeT++ Community Virtual Summit — November 2-3, 2022

The omnetpp.scave package

Part of OMNeT++ 6.0

Analysis API

Chart scripts usually begin with:
- from omnetpp.scave import results, chart, plot, utils,
vectorops as ops
Terminology:
— “chart” is what you edit (Python script + configuration)
— “plot” is the artifact created by running the “chart”
The packages:
- results: Querying results into Pandas data frames
chart: Access to chart properties
plot: Plot to the IDE native plot widget
utils: Common interface to MatplotLib and native widgets; misc utility

functions
vectorops: Vector operations (window average, running sum, etc)

analysis: Read/write/run ANF files from standalone scripts

OMNeT++ Community Virtual Summit — September 8-10, 2021

Slide from last year's Summit

OMNeT++ Community Virtual Summit — November 2-3, 2022

The omnetpp.simulation package

Library and toolset for managing and running simulations and campaigns in

various ways
— in-process / local / distributed (e.g. ssh cluster using Dask)
— for results, for regression testing (e.g. fingerprints), etc.

Grown from the needs of INET development and maintenance
“run all simulations, utilizing all computing resources | have access to”
“refresh list of simulations to be fingerprint-tested”

“re-run failing fingerprint tests”
“re-run simulations that contain WiFi” (after WiFi model change)
“‘compare results to those with INET version X”

Human time is expensive:
— automate/assist as much as possible (high-level tools, REPL, etc)

— store instead of recompute (fingerprints, simulation results, etc)
— utilize available computing resources (multi-core, ssh cluster, etc)

OMNeT++ Community Virtual Summit — November 2-3, 2022

OMNeT++ Community Virtual Summit — November 2-3, 2022

Recap of the Demo

Python added to several OMNeT++ sample simulations:
« pyfifo: pure Python simple modules

« routing: various examples for making use of Python
« aloha: examples for running simulations from Python

1 To try, use the OMNeT++ version at the following URL.:

https://drive.google.com/file/d/1jDD-vtzi9YVzShrw2fP6q1SUU5VMVsDM/view?usp=share_link

OMNeT++ Community Virtual Summit — November 2-3, 2022

samples/pyfifo

« A fairly verbatim re-implementation of the fifo example
« With all modules written in Python

TandemQueues

source fifo1 fifo2

OMNeT++ Community Virtual Summit — November 2-3, 2022

samples/routing

Configurations in omnetpp.ini:
[Fromcsv]: Setting up a network specified in CSV, using Python
[RandonTree]: Setting up a network generated with NetworkX Python package
[DumbbellFaultyLink]: ShOWS a scenario manager written in Python
[appExt]: Extending a C++ simple module from Python
[app2]: Parameter values produced using pyeval()/pycode()

. L) ©
€) nodet[s] 0 noder[1]

nodeLh]\ wdedsl \ ®
(Packet) -to-201-#1
(Bscket %2 N(E3Rket)pk-109-to-202-#0 SwitAh
(Packet)ok- 1"7{"2xh (Pack ok 103N 20141

nodeL[4] (J]
of _ nodel[3] node R[l‘.l]

/ ()
nodeL[7] nodél.[S] nodeR[]

OMNeT++ Community Virtual Summit — November 2-3, 2022

samples/aloha

Python scripts:
examplel.py: instantiating a simulation
simulation = omnetpp.cSimulation(...)
example2.py: all simulations in an omnetpp.ini parameter study
ini.getNumRunsInConfig("PureAlohaExperiment")

example3.py: manually organizing a parameter study
for numHosts in [10,15,20]:
for iaMean in [1,2,3,4,5,7,9]:

example4.py: utilizing multiple CPU cores
with multiprocessing.Pool() as p:
p.map(alohalob, taskList)

example5.py: simulation-based optimization
scipy.optimize.minimize(...)

example5a.py: preserve and also plot all simulations

OMNeT++ Community Virtual Summit — November 2-3,

Questions?

OMNeT++ Community Virtual Summit — November 2-3, 2022

	1 - OMNeT++ Goes Python
	2 - Introduction
	3 - (Snapshot from the office)
	4 - Areas where Python can be useful
	5 - Upcoming Python-related tools
	6 - The pyeval(), pycode() NED functions
	7 - The @pythonClass NED property
	8 - The cppyy package
	9 - The omnetpp.runtime package
	10 - The omnetpp.scave package
	11 - The omnetpp.simulation package
	12 - DEMO
	13 - Recap of the Demo
	14 - samples/pyfifo
	15 - samples/routing
	16 - samples/aloha
	17 - Slide17

