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Background: MareNostrum

Blade-based parallel computer at 
Barcelona Supercomputing Center 
(BSC)
2,560 nodes 
10,240 IBM PowerPC 970MP 
processors at 2.3 GHz (2,560 JS21 
blades) 
Peak performance of 94.21 Teraflops
20 TB of main memory 
280 + 90 TB of disk storage 
Interconnection networks 

Myrinet and Gigabit Ethernet
Linux: SuSe Distribution
44 racks, 120 m2 floor space
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MareIncognito

Joint project between BSC and IBM to developed a follow-on for 
MareNostrum, codenamed MareIncognito

10+ PFLOP/s machine for 2011 timeframe comprising in the order of 10 
- 20K 1+ TFLOP blades

Our focus: Design a performance- and cost-optimized 
interconnection network for such a system

Gain deeper understanding of HPC traffic patterns and the impact of the 
interconnect on overall system performance

Use this understanding to optimize the design of the MareIncognito
interconnect

–

 

Reduce cost & power without sacrificing much performance
–

 

Topology, bisectional bandwidth, routing, contention (internal &

 external), task placement, collectives, adapter & switch implementation
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Interconnect design

Ever-increasing levels of parallelism and distribution are causing shift 
from processor-centric to interconnect-centric computer architecture

Interconnect represents a significant fraction of overall system cost 
Switches, cables

Maintenance

We need tools to predict system performance with reasonable accuracy
Absolute performance

Parameter sensitivity; trend prediction (“what if?”)

Accurate model of application behavior (compute nodes)

Accurate model of communication behavior (interconnect) 

Many tools do either of these things well; very few manage both 
simultaneously with sufficient accuracy
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Compute node model

From the network perspective, compute node acts as traffic source and sink

In communication network design (telco, internet) typical approaches are
“Synthetic” models based on some kind of stochastic processes

–

 

may (or may not) be reasonable if a sufficient level of statistical multiplexing is 
present

–

 

relation to reality unclear at best
Replaying traces recorded on, e.g., some provider’s backbone
In either case, semantics of traffic content are rarely considered: no causal 
dependencies between communications

Traffic in HPC systems has strong causal dependencies
These stem from control and data dependencies inherent in a given parallel program
These dependencies can be captured by running a program on a given machine and 
recording them in a trace file
If the program has been written using the Message Passing Interface (MPI) library, this 
basically amounts to a per-process list of send/recv/wait calls
Such a trace can be replayed observing the MPI call semantics to correctly reproduce 
communication dependencies
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Compute node model: Dimemas
Dimemas (BSC simulator)

Rapidly simulates MPI traces collected from real 
machines

Faithfully models MPI semantics & node 
architecture

Sensitivity: helps identify coarse-grain factors and 
relevant communication phases

Leverages CEPBA Tools trace generation, 
handling and visualization

Models interconnection network at a very high 
abstraction level

Paraver (BSC visualization)
Visualizes MPI communication patterns at the 
node level

Allows “debugging” of inter-process 
communication, e.g., load imbalance, contention

Paraver

Paraver
node trace

Dimemas

(client)

MPI 
trace

config

 

file
(#buses, bandwidth, 

latency, eager 
threshold, …)

MPI
application

run

interface

statistics

MPI replay
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Interconnect model: Venus

Simulates interconnect at flit level
Event-driven simulator using OMNeT++ (originally 
based on MARS simulator)
Supports wormhole routing and segmentation for 
long messages

Provides various detailed switch and 
adapter implementations

Myrinet, 10G Ethernet, InfiniBand
Generic input-, output-, and combined input-
output-queued switches

Provides various topologies and routing 
methods

Extended Generalized Fat Tree (XGFT), Mesh, 
2D/3D Torus, Hypercube, arbitrary Myrinet
topologies

Supports various routing methods
Source routing, table lookup
Algorithmic (online), Myrinet routes files  (offline)
Static, dynamic

Highly configurable
Topology, switch/adapter models, buffer sizes, 
link speed, flit size, segmentation, latencies, etc.

Supports MareNostrum/MareIncognito
Server mode to co-simulate with Dimemas via 
socket interface

Outputs paraver-compatible trace files 
enabling detailed observation of network 
behavior

Detailed models of Myrinet switch and adapter 
hardware

Translation tool to convert Myrinet map file to 
OMNeT++ ned topology description

Import facility to load Myrinet route files at 
simulation runtime; supports multiple routes 
per flow (adaptivity)

Flexible task to node mapping mechanism

Tool to generate Myrinet map and routes files 
for arbitrary XGFTs
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Tool Enhancement & Integration

Goal: Understand application usage of 
physical communication resources 

and facilitate optimal communication 
subsystem design

Paraver
visualization,

analysis,
validation

Paraver
network trace

routesmapping topology

config

 

file
(adapter & switch arch., 

bandwidth, delay, 
segmentation, buffer size, …)

map2ned

.routes file

.map file

routereader

statisticsParaver
node trace

config

 

file
(#buses, bandwidth, 

latency, eager 
threshold, …)

Venus

(server)

co-simulation
(socket)

interface

Dimemas

(client)

interface

statistics

MPI replay

xgft

MPI 
trace

MPI
application

run
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system

Venus model structure

statistics controldimemas
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Hybrid Dimemas
 

& Venus simulation

statistics controldimemas

in[] out[]

in[]

statIn[]statOut[]

out[]

from_control out

into_control

ctrlstatdim

systemstatIn[] statOut[]

prvIn

topLevel

Dimemas
interface

Based on PDES “Null message 
protocol” algorithm

Not really parallel: simulators 
take turns simulating (blocking)

“Earliest input time” set to “0”
while any messages in flight

“Earliest output time” set to  
timestamp of next event

Client/Server model
Venus acts as a server 
simulating the network

Dimemas acts as a client 
simulating the application

Each provides minimal set of 
commands to the other

Venus

(server)

co-simulation
(socket)

interface

Dimemas

(client)

interface

Dimemas commands
SEND timestamp source destination size “extra strings”
STOP timestamp
END
FINISH
PROTO (OK_TO_SEND, READY_TO_RECV) 

Venus responses
STOP REACHED timestamp
COMPLETED SEND [echo of the original data + extra data]
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D&V Co-simulation: SEND example
Dimemas

VenusClient

Event 
Queue
[1us]
[10us]
[20us]

…

process_event()
•Event at t = 1 us is a SEND
•Issue “SEND”

 

command
Blocked in

receive_commands()

“SEND 1us 0 10 32675 0x001 0x002”
source

destination
size any string to 

be sent back

pop_event()
•Messages in flight > 0
•Next Event at time (t == 10us) > 
1us
•Issue “STOP t”

 

command
•Issue “END”

 

command

Blocked in
pop_event()

“STOP 10us”

“END”

END received (unblock)
Process “SEND” command
•Send message at t = 1 us
•Schedule “STOP”

 

at t = 10 us
•Continue simulation

Event: Message received at t = 2 us
•Send Response to Dimemas

•Updating the timestamp
•Cancel scheduled “STOP”

“COMPLETED SEND 2us 0 10 32675     0x001 0x002”

Venus
ServerMod

Event 
Queue
[1us]
[2us]
[10us]

…

Inside pop_event()
•“END”

 

received (unblock)
•Add “receive”

 

event into the 
queue at time 2 us Blocked in

receive_commands()

“END”

Process Next Event
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Network topologies

Fat tree (k-ary n-tree)

Extended Generalized Fat Tree 
(XGFT)

Mesh

Torus

Hypercube

Arbitrary (possibly irregular) 
topologies using Myrinet map files

network

S3,k^2-1
.  .  .S3,0 S3,k-1 S3,k
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.. .. .. ..
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… … … … … … … …
… … … … … … … …
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.  .  .  .  .  .  .  .  .  .  . A1
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Insights gained at multiple levels
Application & MPI library level

Blocking vs. nonblocking calls

MPI protocol level
Eager vs. rendez-vous

Topology & routing
Static source based routing
Contention and pattern aware routings
Slimmed networks
External vs. internal contention

Hardware
Head-of-line blocking
Switch arbitration policy
Segmentation
Deadlock
Automatic communication-computation overlap 

Putting it all together: Validation with real traces in a real 
machine

Identifying the sources of network performance losses
Collectives variability

Switch & adapter
technology

Network
topology & routing

Protocol/Middleware

Software: Application
& MPI library

In
te

rc
on

ne
ct

 la
ye

rs
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At the protocol level
Eager/Rendez-vous

Rendez-vous protocol needs control 
messages

Impact is relatively small if the 
control messages never wait 
after a data segment to get sent

If control messages are sent after a 
long segment, the sender will be 
delayed

Smaller segments
Out of Band protocol messages

The delay propagates to the other 
threads

Segment size trade-off?
16KB as in Myrinet for long 
messages is too long to interleave 
urgent control messages

Eager: ~4.3 ms

Waiting for 
protocol messages

Alltoall example
(no internal contention) 

No imbalance,
control messages
are always sent
before data 
segments

Rdvz: ~4.8 ms

Very small imbalance
<10us, time: ~6.3 ms
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WRF, 256 nodes
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Venus
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Conclusions & future work

Conclusions
Created OMNeT-based interconnection network simulator that faithfully 
models real networks in terms of topology, routing, flow control, switch- and 
adapter architecture

Integrated network simulator with trace-based MPI simulator to capture 
reactive traffic behavior, thus obtaining high accuracy in simulating the 
interactions between computation and communication

Enabled entirely new insights into the effect of the interconnection network 
on overall system performance under realistic traffic patterns

Future work
Allow multiple simulators to connect to Venus simultaneously

Modify MPI library to directly redirect communications to Venus

Make Venus itself run in parallel

Extended Venus to produce power estimates
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B L O C K I N G

D&V co-simulation: The client
Venus

(server)

co-simulation
(socket)

ServerMod

Dimemas

VenusClient

/* DIMEMAS CODE */

int main() {

//DIMEMAS CODE

vc_initialize();

// EVENT MANAGER

While (events()  || venus_pending_events ()) {

pop_event ();

// DIMEMAS CODE

SEND: (…)

vc_send(…)

RDVZ_RECV: (…)

vc_ready_recv(…)

RDVZ_SEND: (…)

vc_ready_send(…)

}

vc_finish()

// DIMEMAS CODE

}

Open socket to Venus
Create event queue for pending events Modified conditions to stop the 

simulation –

 

now the “normal”

 

queue 
can be empty, because some relevant 
events are pending to be finished by 
Venus

Check if Venus communicated something

Block if necessary (check the number of messages in flight)
Extract event for “events”

 

queue: Reception of messages in 
Venus is handled here

Close the socket

Extract the relevant event from the “events”

 

queue, and put 
them into the “pending_events”

 

queue

Send the commands to Venus through the socket

Increase the number of messages “in_flight”; this will cause 
pop_event() to relinquish control to Venus if necessary
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B L O C K I N GB L O C K I N G

D&V co-simulation: The server
ServerMod is interposed between the statistics 
module and the network.
Acts as a Generator and Sink of “User 
Messages”

Venus

(server)

co-simulation
(socket)

ServerMod

Dimemas

VenusClient

/* SERVERMOD CODE */

int initialize() {

}

int receive_commands() {

while (command = read_from_socket())

execute (command);

}

int handleMessage() {

STOP:

waitForCommands = true;

send_through_socket(STOP REACHED);

USER_MESSAGE:

waitForCommands = callback(UserMessage);

// [ . . . ]

if (waitForCommands) 

receive_commands();

}

Bind/listen/accept (server socket)
Insert into the network “User Messages”

 

as instructed by Dimemas

 

or 
schedule “STOP”s

 

to relinquish control back to Dimemas

Commands are read until an “END”

 

command is found; then Venus simulation 
continues

If a STOP is reached, tell Dimemas

 

and block (in receive_commands()) until Dimemas

 
schedules a next safe “Earliest Output Time”

 

(STOP)

When ServerMod

 

sees a “User Message”

 

it executes the 
associated callback:

If it is a protocol message, new messages are 
injected into the network
If it is a Data message that completed, inform 
Dimemas, cancel the scheduled STOP, and block 
(receive_commands);
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Extended Generalized Fat Trees

XGFT ( h ; m1, … , mh; w1, … , wh )
h = height

number of levels-1

levels are numbered 0 through h

level 0 : compute nodes

levels 1 … h : switch nodes
mi = number of children per node at 
level i, 0 < i ≤ h
wi = number of parents per node at 
level i-1, 0 < i ≤ h

number of level 0 nodes = Πi mi

number of level h nodes = Πi wi

XGFT ( 3 ; 3, 2, 2 ; 2, 2 ,3 )

0,0,0 1,0,0 2,0,0 0,1,0 1,1,0 2,1,0 0,0,1 1,0,1 2,0,1 0,1,1 1,1,1 2,1,1

0,0,0 1,0,0 0,1,0 1,1,0 0,0,1 1,0,1 0,1,1 1,1,1

0,0,0 0,1,0 1,0,0 1,1,0 0,0,1 0,1,1 1,0,1 1,1,1

0,0,0 0,0,1 0,0,2 0,1,0 0,1,1 0,1,2 1,0,0 1,0,1 1,0,2 1,1,0 1,1,1 1,1,2

0

1

2
1

1

0
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Performance of 256-node WRF on various topologies –
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Impact of scheduling policy

L2
 s

w
itc

he
s

The scheduling policy is the determining 
factor (infinite CPU, IQ switch)

Round-robin pointers are initialized randomly

When contention occurs (on output 15), the 
“wrong” selection (which depends on the position 
of the pointer) results in HOL blocking; the 
scheduler should first serve the input on which 
another message will arrive

Unfortunately, it has no crystal ball…

Switch & adapter technology

Network topology & routing

Protocol/Middleware

Software: Application & MPI library

(c) Pointers initialized to N-1(b) Pointers initialized to 0

(a) Pointers initialized randomly

L2
 s

w
itc

he
s

HOL blocking detected
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Backup
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Multi-rail system
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MultiHost
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D&V Co-simulation: Protocol (hints)
Human-readable ASCII text
Sent through standard Unix Sockets
Few Commands and Responses
Extensible

Venus

(server)

co-simulation
(socket)

ServerMod

Dimemas

VenusClient

Commands
SEND timestamp source destination size “extra strings”

–

 

The “extra strings”

 

enconde

 

the events that Dimemas

 

wil

 
update upon reception of the message.

STOP timestamp
END
FINISH
PROTO (OK_TO_SEND,READY_TO_RECV) 

–

 

(parameters as for SEND)

Responses:
STOP REACHED timestamp
COMPLETED SEND [echo of the original data + extra data]
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Impact of switch architecture

completion time = 135 µs

completion time = 87 µscompletion time = 63 µs

Infinite CPU speed, output-queued switch Infinite CPU speed, input-queued switch

Normal CPU speed, output-queued switch

completion time = 157 µs

Normal CPU speed, input-queued switch

Ideal case, traffic pattern 
completes in about two 
times the message duration 
(54 µs) plus startup latency

One node (task 95) starts 
sending 26 µs later than all 
other tasks, adding 26 µs to 
the communication time

Three messages 
experience additional delay 
due to HOL blocking. Why?
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