

IBM Research GmbH, Zurich, Switzerland

Trace-driven co-simulation of highperformance computing systems using OMNeT++

Cyriel Minkenberg, Germán Rodríguez Herrera IBM Research GmbH, Zurich, Switzerland

© 2009 IBM Corporation

Overview

Context

- ➢ MareNostrum → MareIncognito
- Design of interconnection networks for massively parallel computers

Models & tools

- Computation Dimemas
- Communication Venus
- Visualization
 Paraver
- Integrated tool chain
 - Venus architecture
 - Co-simulation with Dimemas
 - Paraver tracing
 - Accuracy: topologies, routing, mapping, Myrinet/IBA/Ethernet models
- Sample results
- Conclusions & future work

Background: MareNostrum

- Blade-based parallel computer at Barcelona Supercomputing Center (BSC)
- 2,560 nodes
- 10,240 IBM PowerPC 970MP processors at 2.3 GHz (2,560 JS21 blades)
- Peak performance of 94.21 Teraflops
- 20 TB of main memory
- 280 + 90 TB of disk storage
- Interconnection networks

Myrinet and Gigabit Ethernet

- Linux: SuSe Distribution
- 44 racks, 120 m² floor space

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy

MareIncognito

- Joint project between BSC and IBM to developed a follow-on for MareNostrum, codenamed *MareIncognito*
- 10+ PFLOP/s machine for 2011 timeframe comprising in the order of 10
 20K 1+ TFLOP blades
- Our focus: Design a performance- and cost-optimized interconnection network for such a system
 - Gain deeper understanding of HPC traffic patterns and the impact of the interconnect on overall system performance
 - Use this understanding to optimize the design of the MareIncognito interconnect
 - Reduce cost & power without sacrificing much performance
 - Topology, bisectional bandwidth, routing, contention (internal & external), task placement, collectives, adapter & switch implementation

Interconnect design

- Ever-increasing levels of parallelism and distribution are causing shift from processor-centric to interconnect-centric computer architecture
- Interconnect represents a significant fraction of overall system cost
 - Switches, cables
 - > Maintenance
- We need tools to predict system performance with reasonable accuracy
 - > Absolute performance
 - Parameter sensitivity; trend prediction ("what if?")
 - Accurate model of application behavior (compute nodes)
 - Accurate model of communication behavior (interconnect)
- Many tools do either of these things well; very few manage both simultaneously with sufficient accuracy

IBW

Compute node model

- From the network perspective, compute node acts as traffic source and sink
- In communication network design (telco, internet) typical approaches are
 - Synthetic" models based on some kind of stochastic processes
 - may (or may not) be reasonable if a sufficient level of statistical multiplexing is present
 - relation to reality unclear at best
 - Replaying traces recorded on, e.g., some provider's backbone
 - In either case, semantics of traffic content are rarely considered: no causal dependencies between communications
- Traffic in HPC systems has strong causal dependencies
 - > These stem from control and data dependencies inherent in a given parallel program
 - These dependencies can be captured by running a program on a given machine and recording them in a trace file
 - If the program has been written using the Message Passing Interface (MPI) library, this basically amounts to a per-process list of send/recv/wait calls
 - Such a trace can be replayed observing the MPI call semantics to correctly reproduce communication dependencies

Compute node model: *Dimemas*

- Dimemas (BSC simulator)
 - Rapidly simulates MPI traces collected from real machines
 - Faithfully models MPI semantics & node architecture
 - Sensitivity: helps identify coarse-grain factors and relevant communication phases
 - Leverages CEPBA Tools trace generation, handling and visualization
 - Models interconnection network at a very high abstraction level
- Paraver (BSC visualization)
 - Visualizes MPI communication patterns at the node level
 - Allows "debugging" of inter-process communication, e.g., load imbalance, contention

IBW

Interconnect model: Venus

Simulates interconnect at flit level

- Event-driven simulator using OMNeT++ (originally based on MARS simulator)
- Supports wormhole routing and segmentation for long messages
- Provides various detailed switch and adapter implementations
 - > Myrinet, 10G Ethernet, InfiniBand
 - Generic input-, output-, and combined inputoutput-queued switches
- Provides various topologies and routing methods
 - Extended Generalized Fat Tree (XGFT), Mesh, 2D/3D Torus, Hypercube, arbitrary Myrinet topologies
- Supports various routing methods
 - Source routing, table lookup
 - > Algorithmic (online), Myrinet routes files (offline)
 - Static, dynamic
- Highly configurable
 - Topology, switch/adapter models, buffer sizes, link speed, flit size, segmentation, latencies, etc.

Supports MareNostrum/MareIncognito

- Server mode to co-simulate with Dimemas via socket interface
- Outputs paraver-compatible trace files enabling detailed observation of network behavior
- Detailed models of Myrinet switch and adapter hardware
- Translation tool to convert Myrinet map file to OMNeT++ ned topology description
- Import facility to load Myrinet route files at simulation runtime; supports multiple routes per flow (adaptivity)
- > Flexible task to node mapping mechanism
- Tool to generate Myrinet map and routes files for arbitrary XGFTs

Tool Enhancement & Integration

1 2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy

Venus model structure

Hybrid Dimemas & Venus simulation

D&V Co-simulation: SEND example

Network topologies

Insights gained at multiple levels

Application & MPI library level Blocking vs. nonblocking calls

- **MPI** protocol level
 - Eager vs. rendez-vous
- **Topology & routing**
 - Static source based routing \geq
 - Contention and pattern aware routings \geq
 - Slimmed networks
 - External vs. internal contention \geq

Hardware

- Head-of-line blocking \succ
- Switch arbitration policy \geq
- Segmentation \geq
- Deadlock \triangleright
- Automatic communication-computation overlap \geq

Putting it all together: Validation with real traces in a real machine

- Identifying the sources of network performance losses \geq
- Collectives variability \geq

Interconnect layers

Protocol/Middleware

Software: Application

& MPI library

Network topology & routing

Switch & adapter technology

IBW

At the protocol level

- Eager/Rendez-vous
 - Rendez-vous protocol needs control messages
 - Impact is relatively small if the control messages never wait after a data segment to get sent
 - If control messages are sent after a long segment, the sender will be delayed
 - Smaller segments
 - > Out of Band protocol messages
 - The delay propagates to the other threads
- Segment size trade-off?
 - 16KB as in Myrinet for long messages is too long to interleave urgent control messages

Performance of WRF on two-level slimmed tree

WRF, 256 nodes

output-queued switchinput-queued switch (Myrinet)

Number of top-level switches

- Dimemas
 - number of input links = 256
 - number of output links = 256
 - latency = 8 us
 - cpu_ratio = 1.0
 - eager threshold = 32768 bytes
- Venus
 - link speed = 2 Gb/s, flit size = 8 B (duration = 32 ns)
 - Myrinet switch and adapter models
 - Myrinet segmentation
 - adapter buffer size = 1024 KB
 - switch buffer size per port = 8 KB

Conclusions & future work

- Conclusions
 - Created OMNeT-based interconnection network simulator that faithfully models real networks in terms of topology, routing, flow control, switch- and adapter architecture
 - Integrated network simulator with trace-based MPI simulator to capture reactive traffic behavior, thus obtaining high accuracy in simulating the interactions between computation and communication
 - Enabled entirely new insights into the effect of the interconnection network on overall system performance under realistic traffic patterns

Future work

- Allow multiple simulators to connect to Venus simultaneously
- Modify MPI library to directly redirect communications to Venus
- Make Venus itself run in parallel
- Extended Venus to produce power estimates

D&V co-simulation: The client

D&V co-simulation: The server

Extended Generalized Fat Trees

- XGFT (h; m₁, ..., m_h; w₁, ..., w_h)
- h = height
 - ➢number of levels-1
 - > levels are numbered 0 through h
 - >level 0 : compute nodes
 - > levels 1 ... h : switch nodes
- *m*_i = number of children per node at level i, 0 < i ≤ h
- w_i = number of parents per node at level i-1, 0 < i ≤ h
- number of level 0 nodes = $\prod_i m_i$
- number of level h nodes = $\prod_i w_i$

XGFT (3;3,2,2;2,2,3)

Performance of 256-node WRF on various topologies – cpu ratio 1.0

Network topology & routing

Switch & adapter technology

Impact of scheduling policy

- The scheduling policy is the determining factor (infinite CPU, IQ switch)
 - Round-robin pointers are initialized randomly
 - When contention occurs (on output 15), the "wrong" selection (which depends on the position of the pointer) results in HOL blocking; the scheduler should first serve the input on which another message will arrive
 - Unfortunately, it has no crystal ball...

Backup

IBM

Multi-rail system

MultiHost module

D&V Co-simulation: Protocol (hints)

- Human-readable ASCII text
- Sent through standard Unix Sockets
- Few Commands and Responses
- Extensible

- Commands
 - SEND timestamp source destination size "extra strings"
 - The "extra strings" enconde the events that Dimemas will update upon reception of the message.
 - STOP timestamp
 - > END
 - > FINISH
 - PROTO (OK_TO_SEND, READY_TO_RECV)
 - (parameters as for SEND)
- Responses:
 - STOP REACHED timestamp
 - COMPLETED SEND [echo of the original data + extra data]

Impact of switch architecture

Infinite CPU speed, output-queued switch

Normal CPU speed, output-queued switch

Normal CPU speed, input-queued switch

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy