
IBM Research GmbH, Zurich, Switzerland

2nd International Workshop on OMNeT++, March 6, 2009 © 2009 IBM Corporation

Trace-driven co-simulation of high-
 performance computing systems using

OMNeT++

Cyriel Minkenberg, Germán

Rodríguez

Herrera
IBM Research GmbH, Zurich, Switzerland

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Overview

Context
MareNostrum MareIncognito
Design of interconnection networks for massively parallel computers

Models & tools
Computation Dimemas
Communication Venus
Visualization Paraver

Integrated tool chain
Venus architecture
Co-simulation with Dimemas
Paraver tracing
Accuracy: topologies, routing, mapping, Myrinet/IBA/Ethernet models

Sample results

Conclusions & future work

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Background: MareNostrum

Blade-based parallel computer at
Barcelona Supercomputing Center
(BSC)
2,560 nodes
10,240 IBM PowerPC 970MP
processors at 2.3 GHz (2,560 JS21
blades)
Peak performance of 94.21 Teraflops
20 TB of main memory
280 + 90 TB of disk storage
Interconnection networks

Myrinet and Gigabit Ethernet
Linux: SuSe Distribution
44 racks, 120 m2 floor space

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

MareIncognito

Joint project between BSC and IBM to developed a follow-on for
MareNostrum, codenamed MareIncognito

10+ PFLOP/s machine for 2011 timeframe comprising in the order of 10
- 20K 1+ TFLOP blades

Our focus: Design a performance- and cost-optimized
interconnection network for such a system

Gain deeper understanding of HPC traffic patterns and the impact of the
interconnect on overall system performance

Use this understanding to optimize the design of the MareIncognito
interconnect

–

Reduce cost & power without sacrificing much performance
–

Topology, bisectional bandwidth, routing, contention (internal &

 external), task placement, collectives, adapter & switch implementation

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Interconnect design

Ever-increasing levels of parallelism and distribution are causing shift
from processor-centric to interconnect-centric computer architecture

Interconnect represents a significant fraction of overall system cost
Switches, cables

Maintenance

We need tools to predict system performance with reasonable accuracy
Absolute performance

Parameter sensitivity; trend prediction (“what if?”)

Accurate model of application behavior (compute nodes)

Accurate model of communication behavior (interconnect)

Many tools do either of these things well; very few manage both
simultaneously with sufficient accuracy

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Compute node model

From the network perspective, compute node acts as traffic source and sink

In communication network design (telco, internet) typical approaches are
“Synthetic” models based on some kind of stochastic processes

–

may (or may not) be reasonable if a sufficient level of statistical multiplexing is
present

–

relation to reality unclear at best
Replaying traces recorded on, e.g., some provider’s backbone
In either case, semantics of traffic content are rarely considered: no causal
dependencies between communications

Traffic in HPC systems has strong causal dependencies
These stem from control and data dependencies inherent in a given parallel program
These dependencies can be captured by running a program on a given machine and
recording them in a trace file
If the program has been written using the Message Passing Interface (MPI) library, this
basically amounts to a per-process list of send/recv/wait calls
Such a trace can be replayed observing the MPI call semantics to correctly reproduce
communication dependencies

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Compute node model: Dimemas
Dimemas (BSC simulator)

Rapidly simulates MPI traces collected from real
machines

Faithfully models MPI semantics & node
architecture

Sensitivity: helps identify coarse-grain factors and
relevant communication phases

Leverages CEPBA Tools trace generation,
handling and visualization

Models interconnection network at a very high
abstraction level

Paraver (BSC visualization)
Visualizes MPI communication patterns at the
node level

Allows “debugging” of inter-process
communication, e.g., load imbalance, contention

Paraver

Paraver
node trace

Dimemas

(client)

MPI
trace

config

file
(#buses, bandwidth,

latency, eager
threshold, …)

MPI
application

run

interface

statistics

MPI replay

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Interconnect model: Venus

Simulates interconnect at flit level
Event-driven simulator using OMNeT++ (originally
based on MARS simulator)
Supports wormhole routing and segmentation for
long messages

Provides various detailed switch and
adapter implementations

Myrinet, 10G Ethernet, InfiniBand
Generic input-, output-, and combined input-
output-queued switches

Provides various topologies and routing
methods

Extended Generalized Fat Tree (XGFT), Mesh,
2D/3D Torus, Hypercube, arbitrary Myrinet
topologies

Supports various routing methods
Source routing, table lookup
Algorithmic (online), Myrinet routes files (offline)
Static, dynamic

Highly configurable
Topology, switch/adapter models, buffer sizes,
link speed, flit size, segmentation, latencies, etc.

Supports MareNostrum/MareIncognito
Server mode to co-simulate with Dimemas via
socket interface

Outputs paraver-compatible trace files
enabling detailed observation of network
behavior

Detailed models of Myrinet switch and adapter
hardware

Translation tool to convert Myrinet map file to
OMNeT++ ned topology description

Import facility to load Myrinet route files at
simulation runtime; supports multiple routes
per flow (adaptivity)

Flexible task to node mapping mechanism

Tool to generate Myrinet map and routes files
for arbitrary XGFTs

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Tool Enhancement & Integration

Goal: Understand application usage of
physical communication resources

and facilitate optimal communication
subsystem design

Paraver
visualization,

analysis,
validation

Paraver
network trace

routesmapping topology

config

file
(adapter & switch arch.,

bandwidth, delay,
segmentation, buffer size, …)

map2ned

.routes file

.map file

routereader

statisticsParaver
node trace

config

file
(#buses, bandwidth,

latency, eager
threshold, …)

Venus

(server)

co-simulation
(socket)

interface

Dimemas

(client)

interface

statistics

MPI replay

xgft

MPI
trace

MPI
application

run

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

system

Venus model structure

statistics controldimemas

in[] out[]

in[]

statIn[]statOut[]

out[]

from_control out

into_control

ctrlstatdim

systemstatIn[] statOut[]

prvIn

topLevel

Network[0]st
at

In
[H

*C
]

st
at

O
ut

[H
*C

]

system

Network[N-1]

statIn[C]

statOut[C]
Host[0]

dataIn[N]

dataOut[N]

statIn[C]

statOut[C]
Host[h]

dataIn[N]

dataOut[N]

statIn[C]

statOut[C]
Host[H-1]

dataIn[N]

dataOut[N]

dataIn[H]

dataOut[H]

dataIn[H]

dataOut[H]

Host

node[0]

st
at

In
[C

]
st

at
O

ut
[C

]

node[C-1]

node[c]

da
ta

O
ut

[C
]

da
ta

In
[C

]

dataInIngr

adapter[0]
dataOutEgr

dataOutIngr

dataInEgr

ad
ap

O
ut

[A
]

ad
ap

In
[A

]

no
de

O
ut

[C
]

no
de

In
[C

]
dataInIngr

adapter[a]
dataOutEgr

dataOutIngr

dataInEgr

dataInIngr

adapter[A-1]
dataOutEgr

dataOutIngr

dataInEgr

in out

in out

in out

router

host

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Hybrid Dimemas

& Venus simulation

statistics controldimemas

in[] out[]

in[]

statIn[]statOut[]

out[]

from_control out

into_control

ctrlstatdim

systemstatIn[] statOut[]

prvIn

topLevel

Dimemas
interface

Based on PDES “Null message
protocol” algorithm

Not really parallel: simulators
take turns simulating (blocking)

“Earliest input time” set to “0”
while any messages in flight

“Earliest output time” set to
timestamp of next event

Client/Server model
Venus acts as a server
simulating the network

Dimemas acts as a client
simulating the application

Each provides minimal set of
commands to the other

Venus

(server)

co-simulation
(socket)

interface

Dimemas

(client)

interface

Dimemas commands
SEND timestamp source destination size “extra strings”
STOP timestamp
END
FINISH
PROTO (OK_TO_SEND, READY_TO_RECV)

Venus responses
STOP REACHED timestamp
COMPLETED SEND [echo of the original data + extra data]

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

D&V Co-simulation: SEND example
Dimemas

VenusClient

Event
Queue
[1us]
[10us]
[20us]

…

process_event()
•Event at t = 1 us is a SEND
•Issue “SEND”

command
Blocked in

receive_commands()

“SEND 1us 0 10 32675 0x001 0x002”
source

destination
size any string to

be sent back

pop_event()
•Messages in flight > 0
•Next Event at time (t == 10us) >
1us
•Issue “STOP t”

command
•Issue “END”

command

Blocked in
pop_event()

“STOP 10us”

“END”

END received (unblock)
Process “SEND” command
•Send message at t = 1 us
•Schedule “STOP”

at t = 10 us
•Continue simulation

Event: Message received at t = 2 us
•Send Response to Dimemas

•Updating the timestamp
•Cancel scheduled “STOP”

“COMPLETED SEND 2us 0 10 32675 0x001 0x002”

Venus
ServerMod

Event
Queue
[1us]
[2us]
[10us]

…

Inside pop_event()
•“END”

received (unblock)
•Add “receive”

event into the
queue at time 2 us Blocked in

receive_commands()

“END”

Process Next Event

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Network[0]st
at

In
[H

*C
]

st
at

O
ut

[H
*C

]

system

Network[N-1]

statIn[C]

statOut[C]
Host[0]

dataIn[N]

dataOut[N]

statIn[C]

statOut[C]
Host[h]

dataIn[N]

dataOut[N]

statIn[C]

statOut[C]
Host[H-1]

dataIn[N]

dataOut[N]

dataIn[H]

dataOut[H]

dataIn[H]

dataOut[H]

Network topologies

Fat tree (k-ary n-tree)

Extended Generalized Fat Tree
(XGFT)

Mesh

Torus

Hypercube

Arbitrary (possibly irregular)
topologies using Myrinet map files

network

S3,k^2-1
. . .S3,0 S3,k-1 S3,k

S2,0 S2,k-1 S2,k S2,2k-1 … … S2,(k-1)k S2,k^2-1

..

S1,0 S1,k-1 S1,k S1,2k-1 … … S1,(k-1)k S1,k^2-1

..
… … … … … … … …

… … … … … … … …
… … … … … … … …

… …

Ak^3

. A1

S3,2k-1
.. .. S3,(k-1)k… …

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Insights gained at multiple levels
Application & MPI library level

Blocking vs. nonblocking calls

MPI protocol level
Eager vs. rendez-vous

Topology & routing
Static source based routing
Contention and pattern aware routings
Slimmed networks
External vs. internal contention

Hardware
Head-of-line blocking
Switch arbitration policy
Segmentation
Deadlock
Automatic communication-computation overlap

Putting it all together: Validation with real traces in a real
machine

Identifying the sources of network performance losses
Collectives variability

Switch & adapter
technology

Network
topology & routing

Protocol/Middleware

Software: Application
& MPI library

In
te

rc
on

ne
ct

 la
ye

rs

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

At the protocol level
Eager/Rendez-vous

Rendez-vous protocol needs control
messages

Impact is relatively small if the
control messages never wait
after a data segment to get sent

If control messages are sent after a
long segment, the sender will be
delayed

Smaller segments
Out of Band protocol messages

The delay propagates to the other
threads

Segment size trade-off?
16KB as in Myrinet for long
messages is too long to interleave
urgent control messages

Eager: ~4.3 ms

Waiting for
protocol messages

Alltoall example
(no internal contention)

No imbalance,
control messages
are always sent
before data
segments

Rdvz: ~4.8 ms

Very small imbalance
<10us, time: ~6.3 ms

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

WRF, 256 nodes

0

200

400

600

800

1000

1200

12345678910111213141516

Number of top-level switches

Ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 fa
t t

re
e

[%
]

Dimemas
number of input links = 256

number of output links = 256

latency = 8 us

cpu_ratio = 1.0
eager threshold = 32768 bytes

Venus
link speed = 2 Gb/s, flit size = 8 B (duration = 32 ns)

Myrinet switch and adapter models

Myrinet segmentation

adapter buffer size = 1024 KB

switch buffer size per port = 8 KB

WRF, 256 nodes

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

12345678910111213141516

Number of top-level switches

Re
la

tiv
e

in
cr

ea
se

 in
 e

xe
cu

tio
n

tim
e

[%
]

Performance of WRF on two-level slimmed tree
WRF, 256 nodes

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

12345678910111213141516

Number of top-level sw itches

Ex
ec

ut
io

n
tim

e
[s

]

output-queued switch
input-queued switch (Myrinet)

1,1 1,2 1,N
1 N/2 1 N/2 1 N/2

2,1 2,2 2,M

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Conclusions & future work

Conclusions
Created OMNeT-based interconnection network simulator that faithfully
models real networks in terms of topology, routing, flow control, switch- and
adapter architecture

Integrated network simulator with trace-based MPI simulator to capture
reactive traffic behavior, thus obtaining high accuracy in simulating the
interactions between computation and communication

Enabled entirely new insights into the effect of the interconnection network
on overall system performance under realistic traffic patterns

Future work
Allow multiple simulators to connect to Venus simultaneously

Modify MPI library to directly redirect communications to Venus

Make Venus itself run in parallel

Extended Venus to produce power estimates

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

B L O C K I N G

D&V co-simulation: The client
Venus

(server)

co-simulation
(socket)

ServerMod

Dimemas

VenusClient

/* DIMEMAS CODE */

int main() {

//DIMEMAS CODE

vc_initialize();

// EVENT MANAGER

While (events() || venus_pending_events ()) {

pop_event ();

// DIMEMAS CODE

SEND: (…)

vc_send(…)

RDVZ_RECV: (…)

vc_ready_recv(…)

RDVZ_SEND: (…)

vc_ready_send(…)

}

vc_finish()

// DIMEMAS CODE

}

Open socket to Venus
Create event queue for pending events Modified conditions to stop the

simulation –

now the “normal”

queue
can be empty, because some relevant
events are pending to be finished by
Venus

Check if Venus communicated something

Block if necessary (check the number of messages in flight)
Extract event for “events”

queue: Reception of messages in
Venus is handled here

Close the socket

Extract the relevant event from the “events”

queue, and put
them into the “pending_events”

queue

Send the commands to Venus through the socket

Increase the number of messages “in_flight”; this will cause
pop_event() to relinquish control to Venus if necessary

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

B L O C K I N GB L O C K I N G

D&V co-simulation: The server
ServerMod is interposed between the statistics
module and the network.
Acts as a Generator and Sink of “User
Messages”

Venus

(server)

co-simulation
(socket)

ServerMod

Dimemas

VenusClient

/* SERVERMOD CODE */

int initialize() {

}

int receive_commands() {

while (command = read_from_socket())

execute (command);

}

int handleMessage() {

STOP:

waitForCommands = true;

send_through_socket(STOP REACHED);

USER_MESSAGE:

waitForCommands = callback(UserMessage);

// [. . .]

if (waitForCommands)

receive_commands();

}

Bind/listen/accept (server socket)
Insert into the network “User Messages”

as instructed by Dimemas

or
schedule “STOP”s

to relinquish control back to Dimemas

Commands are read until an “END”

command is found; then Venus simulation
continues

If a STOP is reached, tell Dimemas

and block (in receive_commands()) until Dimemas

schedules a next safe “Earliest Output Time”

(STOP)

When ServerMod

sees a “User Message”

it executes the
associated callback:

If it is a protocol message, new messages are
injected into the network
If it is a Data message that completed, inform
Dimemas, cancel the scheduled STOP, and block
(receive_commands);

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Extended Generalized Fat Trees

XGFT (h ; m1, … , mh; w1, … , wh)
h = height

number of levels-1

levels are numbered 0 through h

level 0 : compute nodes

levels 1 … h : switch nodes
mi = number of children per node at
level i, 0 < i ≤ h
wi = number of parents per node at
level i-1, 0 < i ≤ h

number of level 0 nodes = Πi mi

number of level h nodes = Πi wi

XGFT (3 ; 3, 2, 2 ; 2, 2 ,3)

0,0,0 1,0,0 2,0,0 0,1,0 1,1,0 2,1,0 0,0,1 1,0,1 2,0,1 0,1,1 1,1,1 2,1,1

0,0,0 1,0,0 0,1,0 1,1,0 0,0,1 1,0,1 0,1,1 1,1,1

0,0,0 0,1,0 1,0,0 1,1,0 0,0,1 0,1,1 1,0,1 1,1,1

0,0,0 0,0,1 0,0,2 0,1,0 0,1,1 0,1,2 1,0,0 1,0,1 1,0,2 1,1,0 1,1,1 1,1,2

0

1

2
1

1

0

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Performance of 256-node WRF on various topologies –

cpu
 ratio 1.0

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

Hyp
erc

ub
e(8

,9)

Toru
s(1

6,1
6,1

,7)

Toru
s(1

6,8
,2,7)

Toru
s(1

6,4
,4,7)

Hyp
erc

ub
e(0

,25
6)

Mare
Nos

tru
m(256

)

FatT
ree(2

,32
)

Slim
Tree

(2,
32

,16
)

Hyp
erc

ub
e(7

,9)

Slim
Tree

(2,
32

,15
)

Slim
Tree

(2,
32

,13
)

Slim
Tree

(2,
32

,14
)

Slim
Tree

(2,
32

,12
)

Slim
Tree

(2,
32

,11
)

Slim
Tree

(2,
32

,9)

Slim
Tree

(2,
32

,8)

Slim
Tree

(2,
32

,10
)

Toru
s(4

,4,
4,1

0)

Hyp
erc

ub
e(6

,10
)

Toru
s(8

,8,
4,7

)

Toru
s8

,4,4,
8()

Slim
Tree

(2,
32

,7)

Slim
Tree

(2,
32

,6)

Slim
Tree

(2,
32

,5)

Slim
Tree

(2,
32

,4)

Toru
s(4

,4,
2,1

4)

Hyp
erc

ub
e(5

,13
)

Hyp
erc

ub
e(1

,12
9)

Slim
Tree

(2,
32

,3)

Slim
Tree

(2,
32

,2)

Hyp
erc

ub
e(4

,20
)

Hyp
erc

ub
e(3

,35
)

Hyp
erc

ub
e(2

,66
)

Slim
Tree

(2,
32

,1)

Topology

Ex
ec

ut
io

n
tim

e
[s

]

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Impact of scheduling policy

L2
 s

w
itc

he
s

The scheduling policy is the determining
factor (infinite CPU, IQ switch)

Round-robin pointers are initialized randomly

When contention occurs (on output 15), the
“wrong” selection (which depends on the position
of the pointer) results in HOL blocking; the
scheduler should first serve the input on which
another message will arrive

Unfortunately, it has no crystal ball…

Switch & adapter technology

Network topology & routing

Protocol/Middleware

Software: Application & MPI library

(c) Pointers initialized to N-1(b) Pointers initialized to 0

(a) Pointers initialized randomly

L2
 s

w
itc

he
s

HOL blocking detected

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Backup

S3,k^2-1

. . .S3,0 S3,k-1 S3,k

S2,0 S2,k-1 S2,k S2,2k-1 … … S2,(k-1)k S2,k^2-1

..

S1,0 S1,k-1 S1,k S1,2k-1 … … S1,(k-1)k S1,k^2-1

..
… … … … … … … …

… … … … … … … …
… … … … … … … …

… …

Ak^3

. A1

S3,2k-1

.. .. S3,(k-1)k… …

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Multi-rail system

Network[0]st
at

In
[H

*C
]

st
at

O
ut

[H
*C

]

system

Network[N-1]

statIn[C]

statOut[C]
Host[0]

dataIn[N]

dataOut[N]

statIn[C]

statOut[C]
Host[h]

dataIn[N]

dataOut[N]

statIn[C]

statOut[C]
Host[H-1]

dataIn[N]

dataOut[N]

dataIn[H]

dataOut[H]

dataIn[H]

dataOut[H]

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

MultiHost

module
Host

node[0]

st
at

In
[C

]
st

at
O

ut
[C

]

node[C-1]

node[c]

da
ta

O
ut

[C
]

da
ta

In
[C

]

dataInIngr

adapter[0]
dataOutEgr

dataOutIngr

dataInEgr

ad
ap

O
ut

[A
]

ad
ap

In
[A

]

no
de

O
ut

[C
]

no
de

In
[C

]

dataInIngr

adapter[a]
dataOutEgr

dataOutIngr

dataInEgr

dataInIngr

adapter[A-1]
dataOutEgr

dataOutIngr

dataInEgr

in out

in out

in out

router

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

D&V Co-simulation: Protocol (hints)
Human-readable ASCII text
Sent through standard Unix Sockets
Few Commands and Responses
Extensible

Venus

(server)

co-simulation
(socket)

ServerMod

Dimemas

VenusClient

Commands
SEND timestamp source destination size “extra strings”

–

The “extra strings”

enconde

the events that Dimemas

wil

update upon reception of the message.

STOP timestamp
END
FINISH
PROTO (OK_TO_SEND,READY_TO_RECV)

–

(parameters as for SEND)

Responses:
STOP REACHED timestamp
COMPLETED SEND [echo of the original data + extra data]

Trace-driven Co-simulation of High-Performance Computing Systems using OMNeT++

2nd International Workshop on OMNeT++, March 6, 2009, Rome, Italy © 2009 IBM Corporation

Impact of switch architecture

completion time = 135 µs

completion time = 87 µscompletion time = 63 µs

Infinite CPU speed, output-queued switch Infinite CPU speed, input-queued switch

Normal CPU speed, output-queued switch

completion time = 157 µs

Normal CPU speed, input-queued switch

Ideal case, traffic pattern
completes in about two
times the message duration
(54 µs) plus startup latency

One node (task 95) starts
sending 26 µs later than all
other tasks, adding 26 µs to
the communication time

Three messages
experience additional delay
due to HOL blocking. Why?

	Trace-driven co-simulation of high-performance computing systems using OMNeT++
	Overview
	Background: MareNostrum
	MareIncognito
	Interconnect design
	Compute node model
	Compute node model: Dimemas
	Interconnect model: Venus
	Tool Enhancement & Integration
	Venus model structure
	Hybrid Dimemas & Venus simulation
	D&V Co-simulation: SEND example
	Network topologies
	Insights gained at multiple levels
	At the protocol level
	Performance of WRF on two-level slimmed tree
	Conclusions & future work
	Foliennummer 18
	D&V co-simulation: The client
	D&V co-simulation: The server
	Extended Generalized Fat Trees
	Performance of 256-node WRF on various topologies – cpu ratio 1.0
	Impact of scheduling policy
	Backup
	Multi-rail system
	MultiHost module
	D&V Co-simulation: Protocol (hints)
	Impact of switch architecture

