Modeling Obstacles in INET/Mobility Framework

Motivation, Integration, and Performance

Hermann S. Lichte, Jannis Weide
hermann.lichte@upb.de, jannis@mail.upb.de

How to model obstacles in a wireless network simulation?

- Raytracing: Exact but inefficient, requires detailed model of environment, infeasible for simulation large networks
- Log-normal shadowing: Model based on long-term measurements and many obstacles, quick but unspecific

Raytracing

Can we combine both models?

$$
P L(d)[d B]=P L\left(d_{0}\right)[d B]+10 \gamma \log _{10}\left(\frac{d}{d_{0}}\right)+X_{\sigma^{2}}
$$

Location	Average of γ	Average of $\sigma^{2}[\mathrm{~dB}]$	Range of $\mathrm{PL}(1 \mathrm{~m})[\mathrm{dB}]$
Engineering Building	1.9	5.7	$[-50.5,-39.0]$
Apartment Hallway	2.0	8.0	$[-38.2,-35.0]$
Parking Structure	3.0	7.9	$[-36.0,-32.7]$
One-sided Corridor	1.9	8.0	$[-44.2,-33.5]$
One-sided patio	3.2	3.7	$[-39.0,-34.2]$
Concrete canyon	2.7	10.2	$[-48.7,-44.0]$
Plant fence	4.9	9.4	$[-38.2,-34.5]$
Small boulders	3.5	12.8	$[-41.5,-37.2]$
Sandy flat beach	4.2	4.0	$[-40.8,-37.5]$
Dense bamboo	5.0	11.6	$[-38.2,-35.2]$
Dry tall underbrush	3.6	8.4	$[-36.4,-33.2]$

Log-normal shadowing

We need a suitable obstacle model

- Keep efficiency in mind: We need a simple model

Some obstacle k

- SINR-based threshold model: $\operatorname{SINR}(i, j):=\frac{P_{i} a(i, j)}{N_{0}+\sum_{k \neq i} P_{k} a(k, j)} \geq \nu$

ANY-SEGMENTS-INTERSECT for two line segments

- p_{1} and p_{2} are on opposite sides of $\overline{p_{3} p_{4}}$
- p_{3} and p_{4} are on opposite sides of $\overline{p_{1} p_{2}}$

- Sign of cross-product determines orientation
- i.e. $\operatorname{sign}\left(\overline{p_{4} p_{1}} \times \overline{p_{3} p_{4}}\right) \neq \operatorname{sign}\left(\overline{p_{4} p_{2}} \times \overline{p_{3} p_{4}}\right)$
- and $\operatorname{sign}\left(\overline{p_{3} p_{1}} \times \overline{p_{1} p_{2}}\right) \neq \operatorname{sign}\left(\overline{p_{3} p_{2}} \times \overline{p_{1} p_{2}}\right)$
- Also check whether endpoints coincide with line segments

New features - ObstacleControl and its methods

- testIntersect() - true/false

- calcObstacleDecrease() and getIntersectingObstacles()

- getIntersection() - point p_{x}

- getIntersectionLength()

New features - Matter and its attributes

\rfloor (ObstacleObject) sim. obstacle[0] (id=3) (ptr0x185b9dd0)

$$
76 \text { (Matter) sim.obstacle[0].matter }
$$

\rfloor (Matter) sim.obstacle[0].matter (id=10) (ptr0 $\times 185$ badc8)

7 objects

Run-time increase of a trivial extension

Improving run-time by connection caches

- Checking for intersections is time-consuming
- Idea: Cache attenuation factors per connection

Improving run-time by connection caches

- Checking for intersections is time-consuming
- Idea: Cache attenuation factors per connection

- Invalidate all connections that are affected by the move

Improving run-time by connection caches

- Checking for intersections is time-consuming
- Idea: Cache attenuation factors per connection

- Invalidate all connections that are affected by the move

Improving run-time by connection caches

- Checking for intersections is time-consuming
- Idea: Cache attenuation factors per connection

- Invalidate all connections that are affected by the move

Run-time increase when connection caches used

Example - Protocol evaluation with carrier sensing

- Wireless multi-hop transmission from \mathbf{A} via \mathbf{C} to \mathbf{D}
- B retransmits when it cannot overhear C

Obstacles may cause unexpected behavior in your protocol

Obstacle model helps to reveal bad error rates

Error rates caused by collisions due to shielding

Conclusions

- Inadequate models may not capture "true" performance
- The obstacle model proposed today:
- Captures shielding effects
- Efficient and easy to use
- Add-on for stochastic models
- Caching is essential for simulation's performance
- We're currently porting it to OMNeT++ 4.0/INETMANET
- Will be released at http://wwwcs.upb.de/cs
- Get your copy now to
- Play with it
- Reproduce results
- Port to other frameworks
- Improve it

You made up a cool protocol that you want to test

- Wireless multi-hop transmission from \mathbf{A} via C to D

You made up a cool protocol that you want to test

- Wireless multi-hop transmission from \mathbf{A} via \mathbf{C} to \mathbf{D}
- What $A \rightarrow C$ fails?

