Large-scale Evaluation of Distributed Attack Detection

Thomas Gamer, Christoph P. Mayer

Institut für Telematik, Universität Karlsruhe (TH), Germany

Why Attack Detection still is important

- Distributed Denial-of-Service problem persists
 - Attack bandwidth exceeded 40 Gbit/s in 2008
 - Threatens not only servers, but provider infrastructure, too
 - Detection and mitigation still hard to achieve
 - Even harder in the core network
- But DDoS is just one example
 - Spam, botnets, worm propagations, ...

"Our ability to effectively defend the network and its connected hosts continues to be, on the whole, ineffectual"

(Geoff Huston, IPJ, 2008)

- Lots of approaches exist in attack detection but ...
 - how to evaluate them?
 - how to compare them with each other?

Large-scale Evaluation of Distributed Attack Detection

OMNeT++ Workshop 2009 - March 6th

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

Preconditions and Requirements

- How to evaluate (distributed) detection of large-scale attacks?
 - Internet or real networks, respectively
 - Normal operation must not be affected by evaluation
 - Isolation impossible
 - Testbed
 - Large testbeds are expensive
 - Administration and maintenance complex and time-consuming
 - Simulation
 - Controllable environment ensures repeatable and comparable setup

Simulation toolchain for the large-scale evaluation of distributed attack detection

- Toolchain requirements
 - Simplicity and easy usability
 - Realistic simulation environments
 - Transparent deployment of attack detection in real systems
 - Tools should be well-concerted

Large-scale Evaluation of Distributed Attack Detection

OMNeT++ Workshop 2009 - March 6th

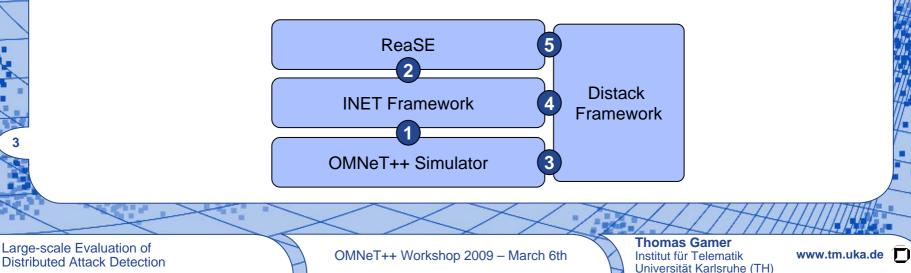
Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

The Big Picture

- Components of the simulation toolchain
 - OMNeT++
 - INET Framework

① Extends OMNeT++ by Internet-specific protocols

ReaSE


2 Adds special entities like clients, servers, or DDoS zombies

Distack Framework

3 Loaded as shared library by OMNeT++

Oistributed attack detection is achieved based on INET protocols

5 Integration of Distack as special entity DistackOmnetIDS

ReaSE – Overview

- Generation of a realistic simulation environment
 - Short paper [1] on basic principles last year
 - Graphical user interface
 - Ensures simplicity and usability
 - Hides the actual implementations
 - Open source release (July 2008)
 - Supports currently only OMNeT++ v3
 - Release of ReaSE for OMNeT++ v4 scheduled for next week

[1] Thomas Gamer, Michael Scharf, *Realistic Simulation Environments for IP-based Networks*, OMNeT++ Workshop, Mar, 2008.

Large-scale Evaluation of Distributed Attack Detection

OMNeT++ Workshop 2009 – March 6th

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

ReaSE – Topology

- Create a network topology
 - NED file containing Routers and StandardHosts igodot

Topology Param	ter File C:\SVN\100000-50x			Select TGM Path	Run		
	ve Default	2000.parameters		Select Tom Path			
Eoud	Derutit		use LD_LIBRARY_PATH		Select		
AS-Level							
			Host Edge systems routers	Gateway	Core		
Nodes Transit Node 1	50 - → Node d		systems routers	routers	routers		
Parameter P	0,4 ÷ %	gnee		Y Y	\sim		
Parameter De							$\overline{}$
					\mathbf{X}	transitAS	2
Router Level		(1/2/			stubAS3
Min Nodes	140 -	Max Nodes				transitAS2	
Core Ratio	5 ÷ %			τ π	· M		tubAS2
Core Cross Li			, ~~ ,	stubAS1 人			
Min Hosts per	Edge 3 🔹	Max Hosts per Edge	5 -				
Misc							
Output NED Fil	C1SVN110	0000-50x2000.ned	Select				
✓ Powerlaw)x2000_powerlaws_					
			\sim	\prec	Th	1 THA	

ReaSE – Topology

- Create a network topology
 - NED file containing Routers and StandardHosts
- Add special entities for generation of background traffic
 - InetUserHost, WebServer, StreamingServer, ...
- Define traffic profiles
 - Randomly selected by special entities during simulation
 - Aggregated traffic shows self-similar behavior

Large-scale Evaluation of Distributed Attack Detection

OMNeT++ Workshop 2009 - March 6th

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

ReaSE – Background Traffic

- Aggregated traffic shows self-similar behavior
 - Exemplary topology: About 50000 nodes in total
 - Divided into 20 Autonomous Systems
 - Calculation of Hurst parameter on every router
 - Based on the method of m-aggregated variances

Router	#	Scaling	Average	Standard		
type	#	factor	Average	deviation		
Edgo	873	100 ms	0.6226	0.0352		
Edge	013	1s	0.6395	0.0645		
Cotowov	55	100 ms	0.6771	0.0461		
Gateway	55	1s	0.7234	0.0701		
Coro			0.8220	0.0599		
Core	14	1 s	0.8927	0.0525		

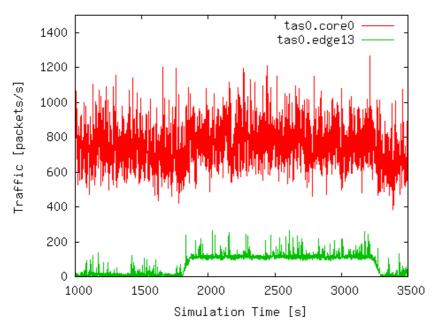
Hurst parameters of all-routers

 Topologies with 1k, 5k, 10k, and 100k nodes also show self-similarity

Large-scale Evaluation of Distributed Attack Detection Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

- Add special entities in regard to attack detection
 - DDoSZombie, WormHost, or DistackOmnetIDS

Input NED File	x2000_servers.ned	Replace Node Type		un	
Output NED File	vrvers_replaced.ned				
DDoSZombie	s (replace InetUserHost)				
Ratio (‰)	40 -				
WormHost (r	eplace InetUserHost)				
Ratio (‰)					
	rable Replacement				
Replace n	ode type Router	by node type	DistackOmnetIDS		
Ratio (‰)	10 +				


Large-scale Evaluation of Distributed Attack Detection

TELEMATICS

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

ReaSE – Attack Traffic

• Example: Simulation of a DDoS attack

Traffic observed on two different routers in transit AS 0 during a DDoS attack

- 10440 entities within 20 AS
- ~40 DDoS zombies
 - Start of attack: 1600s
 - TCP SYN flooding
 - IP address spoofing
- Victim webserver resides in transit AS 0
- edge13 and core0 are part of the attack path

Attack detection is not an easy task within the network
Distributed detection may improve detection efficiency

Large-scale Evaluation of Distributed Attack Detection

OMNeT++ Workshop 2009 - March 6th

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

Distack – Overview

- Framework for anomaly-based attack detection
 - Publication [2] of architecture last year
 - Enhancements in regard to usage within OMNeT++
 - Instantiation of multiple detection systems within simulation
 - Support for heterogeneous configuration of available instances
 - Remote communication methods usable with OMNeT++
 - TCP sockets, path-coupled, ring-based
 - Graphical user interface for scalable and easy configuration
 - Categories and available values are pre-defined

[2] Thomas Gamer, Christoph P. Mayer, Martina Zitterbart, *Distack – A Framework for Anomaly-based Large-scale Attack Detection*, SecurWare 2008, p. 34-40, Aug 2008.

Large-scale Evaluation of Distributed Attack Detection

OMNeT++ Workshop 2009 - March 6th

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

Distack – Simulation Setup

- Scalable assignment of heterogeneous configurations to available Distack instances
 - Different sortings allow for easy grouping of instances

FI EMATICS

	DistackConfigGUI		
	Input NED File: 100000-50x2000_ids.ned (in C:	:\SVN) Load Save	e
	Status: OK		
Currently			
unconfigured	Distack instances without Configuration	Distack instances with Configuration	
🗋 👘 instances 🔪	TAS11.edge70	SAS0.edge52 Path-based_Other.xml	^
	.edge165	TAS1.gw25 Path-based_Other.xml	
-	.edge191	.edge189 Path-based_Other.xml	
	.edge326	.edge204 Path-based_Other.xml	
	SAS12.edge154	.edge287 Path-based_Other.xml	
	SAS13.edge38	.edge307 Path-based_Other.xml	
	.edge50	TAS2.edge290 Path-based_Other.xml	
	.edge98	TAS3.core6 Path-based_Core.xml	
	.edge144	.gw15 Path-based_Other.xml	
	.edge397	.edge88 Path-based_Other.xml	
*		.edge99 Path-based_Other.xml	
Available		.edge293 Path-based_Other.xml	-
configurations	▶ Path-based_Othe ▼ Assign	Remove	
	import/create/modify config import mult	Itiple configs Sort Lists by: AS-Node 🔻	
		<td>44</td>	44
arge-scale Evaluation of stributed Attack Detection	OMNeT++ Workshop 2009	- March 6th	ww

Universität Karlsruhe (TH)

Evaluation of the Toolchain

- Goal of this evaluation is to provide users with a feeling about basic behavior of the toolchain
 - Basic parameters
 - CPU: Intel Xeon 5160 dualcore 3 GHz, 4 Mb shared L2 cache
 - RAM: 32 GB
 - Operating system: 64-bit Ubuntu Linux
 - OMNeT++ 3.4 and according INET framework
 - Compiled without Tcl support
 - Evaluation environments varied in
 - Topology size
 - Number of Autonomous Systems
 - Seeds for random number generators

					-
Topology size	N	Seeds			
1 000	5	10	20	20	
5 000	10	20	50	20	
10 000	10	20	50	10	
50 000	20	50	100	5	
100 000	20	50	100	5	

Decreasing number of seeds due to increasing simulation duration

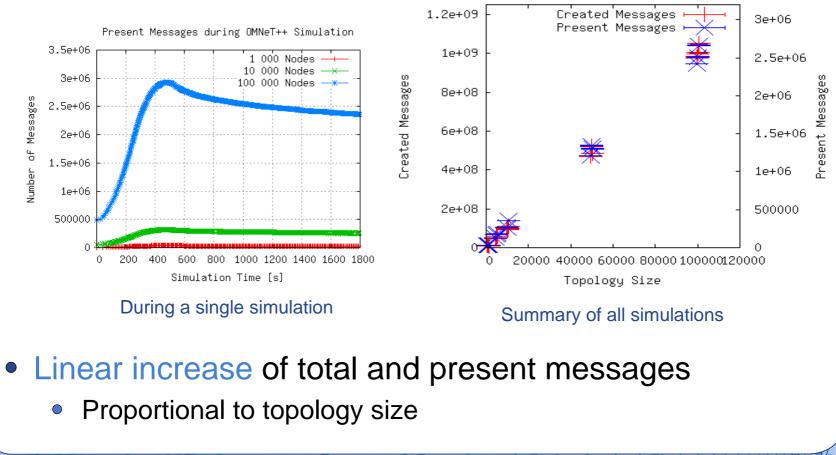
Large-scale Evaluation of Distributed Attack Detection

12

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

- Goal of this evaluation is to provide users with a feeling about basic behavior of the toolchain
 - Evaluation parameters
 - Memory usage
 - Virtual size of the INET process read from proc filesystem
 - Duration
 - CPU time the INET process consumed
 - Messages created by OMNeT++ during simulation
 - Total number of messages
 - Number of present messages

Large-scale Evaluation of Distributed Attack Detection


OMNeT++ Workshop 2009 – March 6th

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

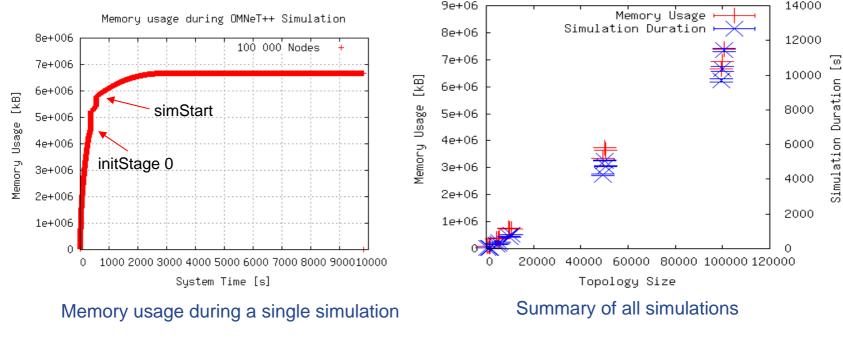
OMNeT++ Messages

Progress of present messages during a simulation

• Simulated time: 1800 s

Large-scale Evaluation of Distributed Attack Detection

FI FMATICS


OMNeT++ Workshop 2009 - March 6th

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

Duration and Memory Usage

Simulation duration and progress of memory usage

• Simulated time: 1800 s

- Memory usage and simulation duration increase linearly
 - Increase of simulation duration more than proportional
 - ev/sec seems not to be independent of topology size

Large-scale Evaluation of Distributed Attack Detection

15

OMNeT++ Workshop 2009 - March 6th

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

Memory Usage of Distack

- Additional integration of Distack instances
 - Exemplary topology
 - 10 000 nodes, 20 AS
 - Basic memory consumption without Distack
 - ▶ 738 478 kB
 - Shared library and dependencies
 - Need for about 6 MB of memory
 - Memory usage per Distack instance
 - About 40 kB for instantiation and traffic measurement

Large-scale Evaluation of Distributed Attack Detection

OMNeT++ Workshop 2009 – March 6th

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

Conclusion and Outlook

- Valuable features of our toolchain
 - Generation of realistic simulation environments
 - Transparent integration of a real attack detection system
 - Graphical user interfaces for simplification and usability
 - Scalable resource consumption
 - Major memory consumption caused by instantiation of modules
 - ...and considered best: *it's open source*

http://www.tm.uka.de/ReaSE

http://www.tm.uka.de/Distack

- Open challenges
 - Integration of traffic traces into the toolchain
 - Evaluation of an actual distributed attack detection
 - Finishing and releasing new versions for OMNeT++ 4.0

Large-scale Evaluation of Distributed Attack Detection

OMNeT++ Workshop 2009 – March 6th

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)

http://www.tm.uka.de/ReaSE

http://www.tm.uka.de/Distack

Large-scale Evaluation of Distributed Attack Detection

18

OMNeT++ Workshop 2009 - March 6th

Thomas Gamer Institut für Telematik Universität Karlsruhe (TH)