
Horizon
Runtime Efficient Event Scheduling inRuntime Efficient Event Scheduling in

Multi-threaded Network Simulation

Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleGeo g u , o Sto e s, Ja es G oss, aus e e

http://www.comsys.rwth-aachen.de/

Communication and
Distributed Systems

OMNeT++ Workshop, SimuTools, March 2011

Motivation

 Need for Complex Network Simulation Models
 Detailed channel and PHY characteristics

 Large scale P2P and Internet backbone models

High processing and runtime demandg p g

 Proliferation of Multi-processor Systemsp y
 Desktop: 4-8 cores, servers: 24 cores

 “Desktop Cluster”es top C uste

Cheap, powerful commodity hardware

2Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Motivation

 Need for Complex Network Simulation Models
 Detailed channel and PHY characteristics

 Large scale P2P and Internet backbone models

High processing and runtime demandg p g

 Proliferation of Multi-processor Systemsp y
 Desktop: 4-8 cores, servers: 24 cores

 “Desktop Cluster”es top C uste

Cheap, powerful commodity hardware

 Utilize Parallelization to Cut Runtimes?

3Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Motivation: Downside of Parallelization

 Parallelization Introduces Overhead
 Thread synchronization, management of shared data y g

 Increased management overhead per event

 Negative impact on events of low complexityg p p y

4Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Motivation: Downside of Parallelization

 Parallelization Introduces Overhead
 Thread synchronization, management of shared data y g

 Increased management overhead per event

 Negative impact on events of low complexityg p p y

 Dilemma / TradeoffDilemma / Tradeoff

Performance Overhead

5Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Motivation: Downside of Parallelization

 Parallelization Introduces Overhead
 Thread synchronization, management of shared data y g

 Increased management overhead per event

 Negative impact on events of low complexityg p p y

 Dilemma / TradeoffDilemma / Tradeoff

Performance Overhead

 Minimize Parallelization Overhead

6Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Horizon: Approach

 Horizon
 Focus on multi-processor systemsp y

 Centralized architecture

 Conservative synchronization

Sim. Model

y
Determine independent events

 Expanded Events
Modeling paradigmg p g

 Per event lookahead

 Identify independent events

Computing
Cluster / CPUs

y p

7Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Horizon: Approach

 Horizon
 Focus on multi-processor systemsp y

 Centralized architecture

 Conservative synchronization

Sim. Model

y
Determine independent events

 Expanded Events
Modeling paradigmg p g

 Per event lookahead

 Identify independent eventsy p

8Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

9Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

10Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

11Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

Trigger processing

12Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

Fetch resultsTrigger processing

13Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

Fetch results

Parallelization Window

Trigger processing

 Independent Events
 Events starting between tstart and tend

 Do not depend on results generated by overlapping event

14Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Modeling paradigm

Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

expanded event

 Independent Events
 Events starting between tstart and tend

 Do not depend on results generated by overlapping event

15Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Modeling paradigm

Challenges
How to reduce parallelization overhead?How to reduce parallelization overhead?

Challenges and Solutions

 We Address Two Challenges

Thread Synchronization Event SchedulingThread Synchronization
Overhead

Event Scheduling
Overhead

17Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Challenges and Solutions

 We Address Two Challenges

Thread Synchronization Event SchedulingEvent SchedulingThread Synchronization
Overhead

Event Scheduling
Overhead

Event Scheduling
Overhead

18Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event sety
Workers wait for incoming jobs

Access to shared data structures event scheduler

 Straightforward Implementation
 Locks condition variables Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available If lock occupied or no job available
Suspend thread

Free-up CPU resources

19Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Free up CPU resources

Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event sety
Workers wait for incoming jobs

Access to shared data structures event scheduler

 Straightforward Implementation
 Locks condition variables

work queue

 Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available If lock occupied or no job available
Suspend thread

Free-up CPU resources

20Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Free up CPU resources

Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event sety
Workers wait for incoming jobs

Access to shared data structures event scheduler

 Straightforward Implementation
 Locks condition variables

work queue

 Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available

workerworkerworker

 If lock occupied or no job available
Suspend thread

Free-up CPU resources

21Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Free up CPU resources

Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event sety
Workers wait for incoming jobs

Access to shared data structures event scheduler

 Straightforward Implementation
 Locks condition variables

work queue

 Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available

workerworkerworker

 If lock occupied or no job available
Suspend thread

Free-up CPU resources

22Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Free up CPU resources

Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event set
Increases Threading OverheadIncreases Threading Overheady

Workers wait for incoming jobs

Access to shared data structures event scheduler

Increases Threading Overhead
• sys-calls into kernel
• context switches

Increases Threading Overhead
• Sys-calls into kernel
• Context switches

 Straightforward Implementation
 Locks condition variables

work queue

 Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available

workerworkerworker

 If lock occupied or no job available
Suspend thread

Free-up CPU resources

23Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Free up CPU resources

Thread Synchronization Overhead: Approach

 Challenge
 Suspending Threads Increases Overheadp g

 Observation
future event set

Observation
 Simulations run on dedicated hardware

 Freeing-up CPUs is needless
event scheduler

 Freeing up CPUs is needless

 Crucial to minimize offloading delay work queue

 Approach
 Use busy waiting for synchronization

workerworkerworker

 Use busy waiting for synchronization

Master actively pushes jobs to workers

24Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Thread Synchronization Overhead: Solution

 Push-based Event Offloading
 Eliminate shared work queueq

 Introduce local synch. buffer per thread

 Spinlock for future event set future event setp

 Synchronization Buffer
M t i j b t t b ff

event scheduler

work queue

Master assigns jobs to empty buffer

Workers spin on empty buffer

 Additional Benefit
Master can identify busy threads

workerworkerworker

y y

Master handles event instead of worker

Make use of scheduler CPU

25Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Thread Synchronization Overhead: Solution

 Push-based Event Offloading
 Eliminate shared work queueq

 Introduce local synch. buffer per thread

 Spinlock for future event set future event setp

 Synchronization Buffer
M t i j b t t b ff

event scheduler

Master assigns jobs to empty buffer

Workers spin on empty buffer

 Additional Benefit
Master can identify busy threads

workerworkerworker

y y

Master handles event instead of worker

Make use of scheduler CPU

26Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Thread Synchronization Overhead: Solution

 Push-based Event Offloading
 Eliminate shared work queueq

 Introduce local synch. buffer per thread

 Spinlock for future event set future event setp

 Synchronization Buffer
M t i j b t t b ff

event scheduler

Master assigns jobs to empty buffer

Workers spin on empty buffer

 Additional Benefit
Master can identify busy threads

workerworker
jobjob

worker
job

y y

Master handles event instead of worker

Make use of scheduler CPU

27Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Challenges and Solutions

 We Address Two Challenges

Thread synchronization Event SchedulingThread synchronization
Overhead

Event Scheduling
Overhead

28Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Challenge

expanded event

 Integrate Expanded Events
 One discrete event marks start

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished

29Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Challenge

expanded event

start event

 Integrate Expanded Events
 One discrete event marks start

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished

30Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Challenge

expanded event

start event barrier event

 Integrate Expanded Events
 One discrete event marks start

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished

31Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Challenge

expanded event

start event barrier event

expanded eventexpanded event

 Integrate Expanded Events
 One discrete event marks start

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished

32Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Challenge

expanded event

start event barrier event

expanded eventexpanded event

Doubles overhead per eventDoubles Overhead per Event
C ti d l ti f t

 Integrate Expanded Events
 One discrete event marks start

• Creation, deletion of events
• Insertion, removal from FES

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished

33Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Approach

 Observations
 Push-based synchronizationy

Upper bound for simultaneously offloaded events: #CPUs

Upper bound for simultaneously existing barriers: #CPUs

 Approach
 Avoid insertion into locked(!) message queue Avoid insertion into locked(!) message queue

 Each thread maintains barrier time of current event

 Pointer to earliest barrier enables fast lookup Pointer to earliest barrier enables fast lookup

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message

34Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

end end end end

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 0.5 s
tend: 0.8 s

tstart: 1.2 s
tend: 1.5 s

tstart: 0.0 s
tend: 1.0 s

job: job: job: job:

tend: - tend: - tend: - tend: -

35Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 0.5 s
tend: 0.8 s

tstart: 1.2 s
tend: 1.5 s

job: job: job:tstart: 0.0 s
tend: 1.0 s

job:

tend: - tend: - tend: -tend: 1.0 s

36Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 0.5 s
tend: 0.8 s

tstart: 1.2 s
tend: 1.5 s

job: job: job:tstart: 0.0 s
tend: 1.0 s

job:

tend: - tend: - tend: -tend: 1.0 s

37Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

job: job:tstart: 0.0 s
tend: 1.0 s

job: tstart: 0.5 s
tend: 0.8 s

job:

tend: - tend: -tend: 1.0 s tend: 0.8 s

38Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

job: job:tstart: 0.0 s
tend: 1.0 s

job: tstart: 0.5 s
tend: 0.8 s

job:

tend: - tend: -tend: 1.0 s tend: 0.8 s

39Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

tstart: 0.9 s
tend: 1.1 s

job: job:tstart: 0.0 s
tend: 1.0 s

job: tstart: 0.5 s
tend: 0.8 s

job:

tend: - tend: -tend: 1.0 s tend: 0.8 s

40Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

tstart: 0.9 s
tend: 1.1 s

job: job: job:tstart: 0.0 s
tend: 1.0 s

job:

tend: - tend: - tend: -tend: 1.0 s

41Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

tstart: 0.9 s
tend: 1.1 s

job: job: job:tstart: 0.0 s
tend: 1.0 s

job:

tend: - tend: - tend: -tend: 1.0 s

42Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

job: job:tstart: 0.0 s
tend: 1.0 s

job: tstart: 0.9 s
tend: 1.1 s

job:

tend: - tend: -tend: 1.0 s tend: 1.1 s

43Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

job: job: job:tstart: 0.0 s
tend: 1.0 s

job:

tend: - tend: - tend: -tend: 1.0 s

44Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

job: job: job: job:

tend: - tend: - tend: - tend: -

45Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

job: job: job: tstart: 1.2 s
tend: 1.5 s

job:

tend: - tend: - tend: - tend: 1.5 s

46Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

job: job: job: tstart: 1.2 s
tend: 1.5 s

job:

tend: - tend: - tend: - tend: 1.5 s

47Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Evaluation
How does it perform?How does it perform?

Evaluation: Model

 Design Goal
Measure event handling overheadg

 “Null” Simulation Modelu S u at o ode
 110 independent modules

 Null module NullNull module
Only re-schedules self-messages

No other computations

Null
Module

 Execute 5.5 Million Events

Execution Time == Overhead

49Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Evaluation: Thread Synchronization Overhead

~ 9.5x
reduction

1000x~ 1000x
reduction

50Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Evaluation: Analysis of Context Switches

P ll b d Th d S h i iPull-based Thread Synchronization

Push-based Thread Synchronization

51Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Evaluation: Event Scheduling Overhead

~ 1.5x
reduction

~ 1.5x 1.5x
reduction

52Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Conclusions
The take away (barrier) messageThe take away (barrier) message…

Conclusions

 Parallelization Increases Overhead
 Thread synchronizationy

 Event scheduling

 Two Approaches to Mitigate Overhead
 Push-based thread synchronization minimizes context switchesPush based thread synchronization minimizes context switches

 Local barrier information replaces barrier messages

 Overhead Reduction
 Push-based synchronization: ~9 5x reduction Push based synchronization: 9.5x reduction

 Barrier algorithm: ~1.5x reduction

 Combined: ~ 14x reduction

54Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

 Combined: 14x reduction

Thank You

Questions?

55Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

Backup Slides
Just in case someone asksJust in case someone asks…

Time Calibration

 How to Obtain Accurate Timing Information?
 Utilize existing techniquesg q

 Emulation
A fili l d h d

A
c

 Accurate profiling on emulated hardware

 Automatic Simulation Calibration

ccuracy

 Applicable to simple hardware platforms only

P t l S ifi ti Protocol Specifications
 Independent of hardware platform

D
evelop

D
evelop

Spe

 Expert Knowledge
 Requires experience and careful judgment

pm
ent

ed

57Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

q p j g

Parallel Scheduling

 Parallel Scheduling
 Offload independent events to worker CPUsp

event en+2

g
un

its independent
events

sim. time

event en+4

event en

event en+1

event en+3event en-2

event en-1

pr
oc

es
si

ng

 Causal Correctness
sim. timetstart tend

 Increasing timestamp order among dependent events

 Data Integrityg y
 Compose model of self-contained functional units

 Functional units correspond to concept of logical processes

58Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems

p p g p

