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Motivation

 Need for Complex Network Simulation Models
 Detailed channel and PHY characteristics

 Large scale P2P and Internet backbone models

High processing and runtime demandg p g

 Proliferation of Multi-processor Systemsp y
 Desktop: 4-8 cores, servers: 24 cores

 “Desktop Cluster”es top C uste

Cheap, powerful commodity hardware
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 Need for Complex Network Simulation Models
 Detailed channel and PHY characteristics

 Large scale P2P and Internet backbone models

High processing and runtime demandg p g

 Proliferation of Multi-processor Systemsp y
 Desktop: 4-8 cores, servers: 24 cores

 “Desktop Cluster”es top C uste

Cheap, powerful commodity hardware

 Utilize Parallelization to Cut Runtimes?
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Motivation: Downside of Parallelization

 Parallelization Introduces Overhead
 Thread synchronization, management of shared data y g

 Increased management overhead per event

 Negative impact on events of low complexityg p p y
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Performance Overhead
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Motivation: Downside of Parallelization

 Parallelization Introduces Overhead
 Thread synchronization, management of shared data y g

 Increased management overhead per event

 Negative impact on events of low complexityg p p y

 Dilemma / TradeoffDilemma / Tradeoff

Performance Overhead

 Minimize Parallelization Overhead 
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Horizon: Approach

 Horizon
 Focus on multi-processor systemsp y

 Centralized architecture

 Conservative synchronization

Sim. Model

y
Determine independent events

 Expanded Events 
Modeling paradigmg p g

 Per event lookahead

 Identify independent events

Computing
Cluster / CPUs

y p
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Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p
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 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend
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Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

Trigger processing
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Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

Fetch resultsTrigger processing
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Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

Fetch results

Parallelization Window

Trigger processing

 Independent Events
 Events starting between tstart and tend

 Do not depend on results generated by overlapping event
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Horizon: Expanded Events

 Expanded Events
Model processes that span period of timep p p

 Augment discrete events with durations

Discrete events span period of simulated timep p

expanded event

tstart tend

expanded event

 Independent Events
 Events starting between tstart and tend

 Do not depend on results generated by overlapping event
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Modeling paradigm



Challenges
How to reduce parallelization overhead?How to reduce parallelization overhead?



Challenges and Solutions

 We Address Two Challenges

Thread Synchronization Event SchedulingThread Synchronization
Overhead

Event Scheduling
Overhead
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Thread Synchronization Event SchedulingEvent SchedulingThread Synchronization
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Event Scheduling
Overhead

18Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems



Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event sety
Workers wait for incoming jobs

Access to shared data structures event scheduler

 Straightforward Implementation
 Locks condition variables Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available If lock occupied or no job available
Suspend thread

Free-up CPU resources
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Thread Synchronization Overhead: Challenge

 Master/Worker Architecture
Master coordinates simulation progressp g

Workers do actual processing

 Synchronization involves future event set
Increases Threading OverheadIncreases Threading Overheady

Workers wait for incoming jobs

Access to shared data structures event scheduler

Increases Threading Overhead
• sys-calls into kernel 
• context switches

Increases Threading Overhead
• Sys-calls into kernel 
• Context switches

 Straightforward Implementation
 Locks condition variables

work queue

 Locks, condition variables

Workers pull jobs from work queue

 If lock occupied or no job available

workerworkerworker

 If lock occupied or no job available
Suspend thread
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Thread Synchronization Overhead: Approach

 Challenge
 Suspending Threads Increases Overheadp g

 Observation
future event set

Observation
 Simulations run on dedicated hardware

 Freeing-up CPUs is needless
event scheduler

 Freeing up CPUs is needless

 Crucial to minimize offloading delay work queue

 Approach
 Use busy waiting for synchronization

workerworkerworker

 Use busy waiting for synchronization

Master actively pushes jobs to workers
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Thread Synchronization Overhead: Solution

 Push-based Event Offloading
 Eliminate shared work queueq

 Introduce local synch. buffer per thread

 Spinlock for future event set future event setp

 Synchronization Buffer
M t i j b t t b ff

event scheduler

work queue

Master assigns jobs to empty buffer

Workers spin on empty buffer

 Additional Benefit
Master can identify busy threads

workerworkerworker

y y

Master handles event instead of worker

Make use of scheduler CPU
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 Introduce local synch. buffer per thread

 Spinlock for future event set future event setp

 Synchronization Buffer
M t i j b t t b ff

event scheduler

Master assigns jobs to empty buffer

Workers spin on empty buffer

 Additional Benefit
Master can identify busy threads
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worker
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Master handles event instead of worker
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27Georg Kunz, Mirko Stoffers, James Gross, Klaus WehrleCommunication and
Distributed Systems



Challenges and Solutions

 We Address Two Challenges

Thread synchronization Event SchedulingThread synchronization
Overhead

Event Scheduling
Overhead
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Event Scheduling Overhead: Challenge

expanded event

 Integrate Expanded Events
 One discrete event marks start

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished
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Event Scheduling Overhead: Challenge

expanded event

start event

 Integrate Expanded Events
 One discrete event marks start

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished
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Event Scheduling Overhead: Challenge

expanded event

start event barrier event

expanded eventexpanded event

Doubles overhead per eventDoubles Overhead per Event
C ti  d l ti  f  t

 Integrate Expanded Events
 One discrete event marks start

• Creation, deletion of  events
• Insertion, removal from FES

 Another discrete event marks end

 Overlapping events: Start before barrier event

 Straightforward Implementation
 Insert barrier event upon offloading

Wait at barrier event till execution finished
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Event Scheduling Overhead: Approach

 Observations
 Push-based synchronizationy

Upper bound for simultaneously offloaded events: #CPUs

Upper bound for simultaneously existing barriers: #CPUs

 Approach
 Avoid insertion into locked(!) message queue Avoid insertion into locked(!) message queue

 Each thread maintains barrier time of current event

 Pointer to earliest barrier enables fast lookup Pointer to earliest barrier enables fast lookup

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message

job:

tend: barrier time

OMNeT++
message
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Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 0.5 s
tend: 0.8 s

tstart: 1.2 s
tend: 1.5 s

tstart: 0.0 s
tend: 1.0 s

job: job: job: job:

tend: - tend: - tend: - tend: -
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Event Scheduling Overhead: Solution

Example Schedule:
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Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

tstart: 1.2 s
tend: 1.5 s

tstart: 0.9 s
tend: 1.1 s

job: job:tstart: 0.0 s
tend: 1.0 s

job: tstart: 0.5 s
tend: 0.8 s
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tend: - tend: -tend: 1.0 s tend: 0.8 s
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Event Scheduling Overhead: Solution

Example Schedule:
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Event Scheduling Overhead: Solution

Example Schedule:
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Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

job: job: job: tstart: 1.2 s
tend: 1.5 s

job:

tend: - tend: - tend: - tend: 1.5 s
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Event Scheduling Overhead: Solution

Example Schedule:

simulated time

Future Event Set
Simulator:

job: job: job: tstart: 1.2 s
tend: 1.5 s

job:

tend: - tend: - tend: - tend: 1.5 s
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Evaluation
How does it perform?How does it perform?



Evaluation: Model

 Design Goal
Measure event handling overheadg

 “Null” Simulation Modelu S u at o ode
 110 independent modules

 Null module NullNull module
Only re-schedules self-messages

No other computations

Null
Module

 Execute 5.5 Million Events

Execution Time == Overhead
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Evaluation: Thread Synchronization Overhead

~ 9.5x
reduction

1000x~ 1000x 
reduction
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Evaluation: Analysis of Context Switches

P ll b d Th d S h i iPull-based Thread Synchronization

Push-based Thread Synchronization
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Evaluation: Event Scheduling Overhead

~ 1.5x
reduction

~ 1.5x 1.5x
reduction
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Conclusions
The take away (barrier) messageThe take away (barrier) message…



Conclusions

 Parallelization Increases Overhead
 Thread synchronizationy

 Event scheduling

 Two Approaches to Mitigate Overhead
 Push-based thread synchronization minimizes context switchesPush based thread synchronization minimizes context switches

 Local barrier information replaces barrier messages

 Overhead Reduction
 Push-based synchronization: ~9 5x reduction Push based synchronization: 9.5x reduction

 Barrier algorithm: ~1.5x reduction

 Combined: ~ 14x reduction
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 Combined:  14x reduction



Thank You

Questions?
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Backup Slides
Just in case someone asksJust in case someone asks…



Time Calibration

 How to Obtain Accurate Timing Information?
 Utilize existing techniquesg q

 Emulation
A fili l d h d

A
c

 Accurate profiling on emulated hardware

 Automatic Simulation Calibration

ccuracy

 Applicable to simple hardware platforms only

P t l S ifi ti Protocol Specifications
 Independent of hardware platform

D
evelop

D
evelop

Spe

 Expert Knowledge
 Requires experience and careful judgment

pm
ent

ed
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Parallel Scheduling

 Parallel Scheduling
 Offload independent events to worker CPUsp

event  en+2

g 
un

its independent
events

sim. time

event  en+4

event  en

event  en+1

event  en+3event  en-2

event  en-1

pr
oc

es
si

ng

 Causal Correctness
sim. timetstart tend

 Increasing timestamp order among dependent events

 Data Integrityg y
 Compose model of self-contained functional units

 Functional units correspond to concept of logical processes
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