
Tips & Tricks for OMNeT++

Rudolf Hornig

OMNeT++ Workshop

March 21, 2010
Barcelona, Spain

Using Valgrind in IDE

Some memory corruption issues are very hard to track down
using a simple debugger. Valgrind on Linux can help you to
nail down these bugs.

2

In OMNeT++ 4.2b1 you can start the

simulation directly with Valgrind. After

running the simulation you will get a

detailed log about potential issues.

Demo: Finding a mysterious bug in TictocValgrind project. After running the

simulation for a while it crashes or a spurious error message appears:

"The dup() method, declared in class cObject, is not redefined in class cObject"

The simulation command line

How to start a simulation from the command line?

The IDE launcher helps you start your simulations easily by
building the command line and the environment for your
program automatically. Sometimes it would be great to start
the simulation from outside the IDE. How do you know what
command line should be used?

3

Tip: Run your, simulation from the IDE,

go to 'Debug view', right click on your

program and select 'Properties'. The IDE

will show you the currently used

command line, working directory and

path variable.

Measuring channel throughput

Sometimes you need to measure the throughput and other
statistics of a link (Datarate channel). Previously you had to
insert a ThruputMeter module in the path, or let a
ChannelInstaller replace channel objects with
ThruputMetering channel.

4

Starting with OMNeT++ 4.1, this is no longer

needed. The built-in DatarateChannel

provides throughput statistics although they

are disabled by default.

To enable throughput statistics in your result files, put in your

INI file:
**.channel.throughput.result-recording-modes = all

Busy, utilization, packets, packetBytes, packetsDiscarded are

also available. Tip: try 'opp_run -h neddecls'

Unreproducible results

The simulation must generate exactly the same results
independent of platform, architecture or the currently used
runtime environment. If you do not get consistent results for
the same run, you should check for:

• Uninitialized variables (use Valgrind)

• Undefined iteration order on maps caused by using pointers
as keys.

• Overflow of architecture specific values (int, long etc.)

• Unintended use of ev.isGui() which modifies the behavior of
the simulation depending on the currently used runtime
environment.

5

Unreproducible results 2

These errors are very hard to catch because they do not cause
direct crashes and they may surface only occasionally on
specific platforms or only after some time of running.

A debugger can be a great help, but first we have to find the
event where the two runs start to diverge. Event log recording
can help here. Record both runs by starting the simulation
with: --record-eventlog=true

This will generate two .elog files that can be compared. Of
course a visual diff tool is useful here, but you can also open
both log files in the sequence chart editor and place them side
by side and look around where the difference is.

6

Unreproducible results 3

We have to look for the first event
where the two simulation starts to
differ. Let's take a look at the
provided example where the ARP
example is behaving differently in
Tkenv and Cmdenv.

Notice that the first event occurring
at different time is #28. It is directly
caused by #27 (an ARP timeout)

Debug that code and see what
happens in those events.

7

Unreproducible results 4

Let's start the debugger and place a breakpoint in
cSimulation::doOneEvent(...)

This is the place where each event is processed and passed to the
model.

We want to check event #27, so we have to add the following
condition to the breakpoint: event_num==27

8

Using the Animation Player

OMNeT++ 4.2b1 now supports the animation playback of .elog
files. It is possible to display the same log file in Animator,
Sequence Chart and the Event Log View at the same time:

9

Unreproducible results 5

Step through the doOneEvent method and enter into the model,
which will be the ARP module's handleMessage().

We will quickly realize that by mistake we have commented out the
getDisplayString().setTagArg() line, but not the previous ev.isGUI()
test which disabled the timeout processing in Cmdenv, but not in
Tkenv. This caused the simulation to run differently...

10

