Realistic Underlays for Overlay Simulation

Ingmar Baumgart, Thomas Gamer, Christian Hübsch and Christoph P. Mayer
[baumgart,huebsch,mayer]@kit.edu, gamer@tm.uka.de
Motivation

- **P2P networks** enable the flexible and scalable deployment of novel services
 - Popular examples: BitTorrent, Skype, Amazon´s Dynamo
- But: Behaviour of P2P networks is often complex and hard to predict
- **Simulation** helps to determine e.g. suitable protocol parameters
 - OverSim is a popular tool to simulate all kind of P2P networks
- P2P networks are usually **overlay networks**
 - Logical network on top of existing underlay network
 - Newer P2P protocols try to adapt the overlay topology to the underlay
 - Application Layer Multicast
 - Low latency DHTs
 - IETF ALTO Traffic Optimization
 - ...

→ To get accurate results we need realistic underlay models for OverSim!
OverSim: The Overlay Framework

Our overlay framework OverSim based on OMNeT++ provides:

- Support for simulation and real world applications
- Rapid development of new overlay protocols
- Scalability (>100.000 nodes) and flexibility due to a modular design

Several state of the art overlay protocols:
- Chord, Koorde, Pastry, Bamboo, Kademlia, Broose, Gia, VAST, QuON, Scribe, SimMUD, NICE

Several overlay applications:
- Generic DHT, i3, P2PNS, Gaming Application
Modular architecture

- **Layered architecture**
 - Underlying network
 - Overlay layer
 - Application layer

- **Consistent interfaces between layers**
 - **UDP/TCP** between network and overlay
 - **Common API** between KBR overlay and application

→ Exchange of one component is transparent to all other components
Classical OverSim underlay models

- **SimpleUnderlay**
 - Low computational overhead
 - Coordinate-based delays calculated from CAIDA/Skitter measurements
 - Logical access network

- **InetUnderlay**
 - Based on the INET framework
 - Complete IP stack is modeled
 - Backbone simulation
 - Extendable by INET framework models, e.g. 802.11

 \[d_e = d_A + \frac{l_p}{b_A} + c \cdot \| A - B \|_2 + d_B + \frac{l_p}{b_B} \]

→ **Lacks support for a proper topology generator for realistic Internet topologies!**
ReaSE topology generator

- Internet-like topologies
 - Two hierarchy levels: AS level and router level
 - Differentiates between Transit AS and Stub AS
 - Additional hierarchy in the router level topology
 - Market demands like link costs result in hierarchical router topology

- Modelling of realistic background traffic
 - Reasonable mix of different kinds of traffic
 - Traffic profiles define flow behavior

- Related Work
 - Only state of the art generation topology generators relevant:
 - Degree-based graph model
 - TIERS, GT-ITM, BRITE are all based on obsolete models
 - Focus only on AS level topology
 - Often separate tools for topology generation and background traffic
Integration of ReaSE in OverSim

- Several modifications to ReaSE to generate OverSim compatible NED file
- In contrast to InetUnderlay the network contains only AS modules (so no routers and no overlay terminals)
- AS modules contain core routers, edge routers and overlay terminals
- Global TerminalConnector and RUNNetworkConfigurator modules parse the underlay topology, assign IP addresses and connect overlay terminals
- Optional ConnectionManager is used to generate background traffic
A quick look at simulation results…

- Network coordinate system Vivaldi with different underlay models

ReaSEUnderlay shows closest relative error results to real network measurements in PlanetLab
What is the best underlay model?

- **SimpleUnderlay**
 - Very scalable (up to 100,000 nodes)
 - Typical Internet end-to-end delays
 - Models only end systems (no overlay nodes in the network core)

- **InetUnderlay**
 - Models queuing effects in intermediate routers
 - Access to all models of the INET framework (e.g., 802.11)
 - Not possible to model the whole internet backbone on router level
 - Generates only basic random topologies

- **ReaSEUnderlay**
 - All benefits of the InetUnderlay
 - Realistic topologies based on real-world Internet observations
 - Also not possible to model the whole internet backbone on router level
Conclusion

- **OverSim** is a scalable and flexible P2P simulation framework
- **ReaSE** is a tool to generate realistic underlay topologies and background traffic based on Internet observations
- The integration of ReaSE in OverSim leads to a new **powerful underlay model**, which is especially useful for the evaluation of
 - Application Layer Multicast (ALM)
 - Network coordinate systems (e.g. Vivaldi)
 - Traffic Optimization (e.g. IETF ALTO)
- Disadvantage is the increased resource consumption…

 …choose your underlay model wisely!