

Realistic Underlays for Overlay Simulation

Ingmar Baumgart, Thomas Gamer, Christian Hübsch and Christoph P. Mayer [baumgart,huebsch,mayer]@kit.edu, gamer@tm.uka.de

Institut für Telematik, Prof. Zitterbart

Motivation

- P2P networks enable the flexible and scalable deployment of novel services
 - Popular examples: BitTorrent, Skype, Amazon´s Dynamo
- But: Behaviour of P2P networks is often complex and hard to predict
- Simulation helps to determine e.g. suitable protocol parameters
 - OverSim is a popular tool to simulate all kind of P2P networks
- P2P networks are usually overlay networks
 - Logical network on top of existing underlay network
 - Newer P2P protocols try to adapt the overlay topology to the underlay
 - Application Layer Multicast
 - Low latency DHTs
 - IETF ALTO Traffic Optimization

OverSim: The Overlay Framework

Our overlay framework OverSim based on OMNeT++ provides:

- Support for simulation and real world applications
- Rapid development of new overlay protocols
- Scalability (>100.000 nodes) and flexibility due to a modular design
- Several state of the art overlay protocols:
 - Chord, Koorde, Pastry, Bamboo, Kademlia, Broose, Gia, VAST, QuON, Scribe, SimMUD, NICE
- Several overlay applications:
 - Generic DHT, i3, P2PNS, Gaming Application

Modular architecture

- Layered architecture
 - Underlying network
 - Overlay layer
 - Application layer
- Consistent interfaces between layers
 - UDP/TCP between network and overlay
 - Common API between KBR overlay and application
 - → Exchange of one component is transparent to all other components

Classical OverSim underlay models

SimpleUnderlay

- Low computational overhead
- Coordinate-based delays calculated from CAIDA/Skitter measurements
- Logical access network

$$d_e = d_A + \frac{l_p}{b_A} + c \cdot ||A - B||_2 + d_B + \frac{l_p}{b_B}$$

InetUnderlay

- Based on the INET framework
- Complete IP stack is modeled
- Backbone simulation
- Extendable by INET framework models, e.g 802.11
- → Lacks support for a proper topology generator for realistic Internet topologies!

ReaSE topology generator

- Internet-like topologies
 - Two hierarchy levels: AS level and router level
 - Differentiates between Transit AS and Stub AS
 - Additional hierarchy in the router level topology

- Market demands like link costs result in hierarchical router topology
- Modelling of realistic background traffic
 - Reasonable mix of different kinds of traffic
 - → Traffic profiles define flow behavior
- Related Work
 - Only state of the art generation topology generators relevant: Degree-based graph model
 - TIERS, GT-ITM, BRITE are all based on obsolete models
 - Focus only on AS level topology
 - Often separate tools for topology generation and background traffic

Integration of ReaSE in OverSim

- Several modifications to ReaSE to generate OverSim compatible NED file
- In contrast to InetUnderlay the network contains only AS modules (so no routers and no overlay terminals)
- AS modules contain core routers, edge routers and overlay terminals
- Global TerminalConnector and RUNNetworkConfigurator modules parse the underlay topology, assign IP addresses and connect overlay terminals
- Optional ConnectionManager is used to generate background traffic

A quick look at simulation results...

Network coordinate system Vivaldi with different underlay models

ReaSEUnderlay shows closest relative error results to real network measurements in PlanetLab

What is the best underlay model?

SimpleUnderlay

- Very scalable (up to 100.000 nodes)
- Typical Internet end-to-end delays
- Models only end systems (no overlay nodes in the network core)

InetUnderlay

- Models queuing effects in intermediate routers
- Access to all models of the INET framework (e.g. 802.11)
- Not possible to model the whole internet backbone on router level
- Generates only basic random topologies

ReaSEUnderlay

- All benefits of the InetUnderlay
- Realistic topologies based on real-world Internet observations
- Also not possible to model the whole internet backbone on router level

Conclusion

- OverSim is a scalable and flexible P2P simulation framework
- ReaSE is a tool to generate realistic underlay topologies and background traffic based on Internet observations
- The integration of ReaSE in OverSim leads to a new powerful underlay model, which is especially useful for the evaluation of
 - Application Layer Multicast (ALM)
 - Network coordinate systems (e.g. Vivaldi)
 - Traffic Optimization (e.g. IETF ALTO)
- Disadvantage is the increased resource consumption...

...choose your underlay model wisely!

Available on http://www.oversim.org/

