
Implementation of the B-MAC Protocol for WSN in MiXiM

[OMNeT++ Code Contribution]

Anna Förster
Networking Laboratory, University of Applied Sciences of Southern Switzerland

anna.foerster@ieee.org

ABSTRACT
This paper presents the implementation and settings of the
B-MAC wireless sensor networking (WSN) protocol for OM-
NeT++ and its WSN framework MiXiM. This protocol is a
very important contribution to the suit of available protocols
for MiXiM and OMNeT++, as it is the most widely MAC
layer protocols for wireless sensor networks applications and
deployments. Together with the already existing simulation
models in MiXiM, such as battery and wireless transmission
models, the implementation of B-MAC enables realistic and
credible WSN simulations.

Keywords
OMNeT++, MiXiM, B-MAC, Berkeley MAC, LPL, Low
Power Listening

1. INTRODUCTION
B-MAC, also Berkeley MAC or Low Power Listening, is

one of the most widely used medium access protocols (MAC)
for wireless sensor networks. It is part of the standard distri-
bution of TinyOS 1 and has been widely used in real world
WSN deployments, such as the TRITon tunnel deployment
in Trento, Italy [2]. The technique is simple, though efficient
and powerful and is able to save a lot of energy in low-traffic
WSN applications.

In this abstract we present the implementation of B-MAC
as a MAC layer in the MiXiM [4] framework for the discrete
event based simulator OMNeT++ 2. The abstract covers
the implementation as of December 2010, with MiXiM at
version 1.2 and OMNeT++ at version 4.1. The code is avail-
able online at www.dti.supsi.ch/~afoerste/downloads.html.

2. IMPLEMENTATION DETAILS
The B-MAC protocol was first presented in [3]. Its main

idea and goal is to let the sensor nodes to sleep (radio

1www.tinyos.net
2www.omnetpp.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

sender

receiver

packet
to send

wakeup and
check the channel

start
preambles

send
data

sleep

checkInterval

slotDuration

slotDuration

wakeup and
check the channel

channel free,
sleep

wakeup and
check the channel

receive data,
sleep

checkInterval

time

time

Figure 1: B-MAC protocol example with one sender
and one receiver.

switched off) for relatively long periods of time and wak-
ing it up at regular intervals to check the ongoing commu-
nications. In case a node wants to send a packet to one or
more of its neighbors, it starts sending short packets, called
also preambles, for exactly the same period of time as the
sleeping period. Thus, every node in its vicinity will wake
up and receive a preamble, informing it that it needs to
stay awake to receive the actual data packet. After send-
ing preambles for the full period, the sender node sends out
the data packet itself and goes back to sleep. This overall
process is presented in Figure 1, while the exact finite state
machine of the our implementation, including MAC-level ac-
knowledgments, is depicted in Figure 2.

In MiXiM, B-MAC is implemented in BMacLayer, which is
inherited from BaseMacLayer. It receives packets from up-
per layers through handleUpperMessage(cMessage *msg).
When packets for this node are received, they are forwarded
to the upper layer, otherwise they are deleted. The user can
control various parameters of the protocol, such as slot du-
ration, check interval, MAC level acknowledgments, length
of the packet queue, etc. All parameters are listed together
with their default values in Table 1. Beside the usual B-
MAC protocol parameters, mentioned above, the MiXiM
implementation accepts also transmissionPower (txPower)
and bitrate of transmission. It is important to note that the

SLEEP

CCA

WAIT_PKT

wakeup
preamble OR data

data AND
!useMacAcks

INIT

start_bmac

SEND
PREAMBLE

timeout AND
queue

sendPreamble

SEND DATA

stopPreambles

WAIT DATA
TX OVER

sendPreamble

WAIT_ACK

useMacAcks AND
txOver AND unicast

txOver AND
!useMacAcks

SEND ACK

(txAttempts > maxTxAttempts) OR
ack received

data AND useMacAcks
AND unicast

WAIT TX
ACK sendAck

txOver

timeout AND
txAttempts < maxTxAttempts

Figure 2: Finite state machine of the MiXiM implementation of B-MAC.

bitrate needs to be the same as for the physical layer, while
txPower can be controlled separately.

3. SHORT DISCUSSION OF B-MAC
There are several properties of B-MAC which need to be

considered before applying the protocol in a specific applica-
tion scenario. B-MAC is strictly low-traffic protocol. While
looking at the example in Figure 1, it becomes clear that
a node is able to transmit exactly one data packet per slot
(cycle). The most of the time of its cycle the node is in
fact transmitting preambles to wake up its neighbors and
only after this preamble sending it will send out the real
data packet. Additionally, the protocol is not able to detect
the hidden node scenario. This is, two nodes might start
sending preambles without hearing from each other, but a
node between them will either receive form both senders or
corrupted packets because of interference.

The slot duration is widely mistaken with the application
duty cycle. For example, the application might gather sen-
sory data and transmit one data packet only every 10 min.
However, the duty cycle or slot duration of B-MAC needs
to be much higher in order to keep up with the data traffic
of other nodes and also to minimize power consumption for
preamble sending and receiving. On the other hand it needs
to be noted that in the absence of traffic B-MAC node get
synchronized with each other. This happens when a data
packet is transmitted by one node: after transmission, all
nodes (sender and receivers) go to sleep simultaneously.

There exist many variants of B-MAC, which are not in-
cluded in this implementation. For example, X-MAC [1] is
such a variation, where a sender of an unicast message waits
for some time between two preambles for the receiver to an-
swer. When the receiver wakes up, it answers immediately to
the sender upon receiving the first preamble, thus allowing
the sender to stop sending preambles and sending the actual
data packet. Another possibility is to include the receiver’s
address in the preamble, so that non-receiver nodes can go
immediately back to sleep. However, these special unicast
scenarios have also an important drawback: They prevent
other nodes form overhearing messages, which is widely for

Parameter Unit Default Description

slotDuration secs 1 sleeping period

checkInterval secs 0.1 duration of CCA phase

queueLength pkts 10 maximum size of MAC
queue

headerLength bits 10 preamble packet length

useMacAcks bool false use MAC level acknowl-
edgments

maxTxAttempts times 2 used only together with
MAC level acknowledg-
ments

txPower mW 50 actual transmission power

bitrate bps 15360 bitrate of the node

animation bool true colorize the nodes accord-
ing to their radio status

Table 1: BMacLayer parameters.

neighborhood management, for example. Thus, the best B-
MAC variant is defined by the specific application and all
other communication protocols in place.

4. REFERENCES
[1] M. Buettner, G. V. Yee, E. Anderson, and R. Han.

X-mac: a short preamble mac protocol for duty-cycled
wireless sensor networks. In Proceedings of the the 4th
ACM Conference on Embedded Networked Sensor
Systems (SenSys), pages 307–320, 2006.

[2] L. Mottola, G. Picco, M. Ceriotti, S. Gunǎ, and A. L.
Murphy. Not all wireless sensor networks are created
equal: A comparative study on tunnels. ACM
Transactions on Sensor Networks, 7(2):1–33, 2010.

[3] J. Polastre, J. Hill, and D. Culler. Versatile low power
media access for wireless sensor networks. In
Proceedings of the 2nd ACM Conference on Embedded
Networked Sensor Systems (SenSys), pages 95–107,
Baltimore, MD, USA, 2004.

[4] K. Wessel, M. Swigulski, A. Köpke, and D. Willkomm.
Mixim: the physical layer an architecture overview. In
Proceedings of the 2nd International Workshop on
OMNeT++, pages 1–8, Rome, Italy, 2009.

