RTP SIMULATION UNDER OMNeT++:
PROBLEMS AND SOLUTIONS

Pantelis Stampoulis

University of Macedonia
Egnatias 156
540 06 Thessaloniki, Greece

pand1988@hotmail.com

1. INTRODUCTION

RTP [1] is one of the most important protocols foultimedia
streaming. Consequently it was implemented in tNNET
framework for use with OMNeT++. However, its implentation
status had been termed ‘incomplete’ for a longqukf time.
Even recently, the ‘Protocol Matrix’ of INET chatadzes its
state as ‘likely incomplete’ and its rating as 9oR].

Having decided to opt for OMNeT++ as the simulaibchoice,
this has been a serious drawback in an otherwisellert
simulation tool. We, therefore, studied the relévarode,
determined the essential problems that hinderedugs in
simulation, and wrote the necessary code amendmecEssary
for the RTP implementation to become functional.

In the rest of this paper we present briefly thebems we
identified as well as the solutions we implemeraed propose,
which are detailed in a separate document submittecthis
purpose.

2. RTPIMPLEMENTATION PROBLEMS
The actual RTP implementation in v4.0 of the OMNepackage
is composed of many files contributed by Matthigspit, Arndt
Buschmann, Ahmed Ayadi and Andras Varga [3]. Unfoately
it was not possible to run RTP-based simulatiorsabse many
errors appear during the respective build phase. biiefly
present the problems we identified as well as thepgsed
solutions.

The first problem appears in ‘RTP.ned’, where thpuit gate
names were wrongly used by the dependent files. tiézefore,
chose to modify these names in a uniform way.

The second problem appears in ‘RTP.h’, where weddlke lines
‘int rtp_counter;’ and ‘simtime_t rtp_pkt_delay;b tbe able to
count the number of packets and bytes reachin¢gpaeceiver.

In ‘RTP.cc’ we changed the gate names as in ‘RTdP.aed
initialize and update the values of ‘rtp_counterddbytesRecvd'.

In ‘RTPProfile.h” we had to modify the code for
SSRCGate(uint32 src), because findSSRCGate(uint8&) s
searches for an object of type SSRCGate. Howeviee, t
SSRCGate constructor creates an object with no nhemce it
cannot be found during the search. Also, the SSREGass was

Panayotis Fouliras

University of Macedonia
Egnatias 156
540 06 Thessaloniki, Greece

pfoul@uom.gr

initially defined as of type ‘cNamedObject’ insteafithe correct
‘CArray’.

The fifth problem appears in the file ‘RTPProfilg.cThere is an
error in the line ‘rtpPayloadSender->initialize()ywhich should
be modified to ‘rtpPayloadSender->callinitializ&()hecause we
need to initialize not only the module from where @all this, but
also all the respective submodules, something wisickchieved
by the proposed modification. Also, several gatmemhad to be
modified.

The sixth problem appears in the file ‘RTPLayer.nedhere
several gate names have again to be modified.

The seventh problem appears in ‘RTPHost.ned’, whichtypical

example of a network topology containing hosts bépaf RTP

traffic generation and consumption. Such hostsesmrted here
as compound modules, cannot be automatically asdigi®

addresses from the ‘flatNetworkConfigurator'. THere, we had
to include the ‘@node’ attribute and make some ghanin

several gate names. Unfortunately, this is not ghpsince we
need to make the necessary modifications in deperfides that

implement ‘RTPApplication’. These are outlined helo

In ‘RTPApplication.ned’ only gate names are modifie

In ‘RTPApplication.h’” we modified the definition dhitialize(),
by including the parameter ‘int stage’. This is dese in
compound modules, the initialization should staonf simpler
modules, run flatNetworkConfigurator for IP assigmty and
then initialize RTPApplication. With our parameténitialize’
can identify the present initialization stage, veleex our function
‘virtual int numinitStages() const{return 4};" makéinitialize’ to
run for each stage upto the desired one (here Spgklso, the
type of variable ‘_destinationAddress’ was changédm
IPAddress to IPvXAddress, so that the module
IPAddressResolver could be used in the ‘RTPAppbecatc’ file
which accepts the name of a module as a stringcanderts it to
the respective IP address.

Finally, in ‘RTPApplication.cc’ we included ‘[PvXAdtess.h’ and
‘IPAddressResolver.h’. We added ‘if (stage!=3) ratuin
‘initialize()’ so that it does nothing until we refa stage 3 of
initialization. Also, we added the necessary codlecbnverting
the destination name to an ip address and in fomcti
‘enterSession’ we could not use as an input a petemof type
IPvXAddress as we had decided to do, but of typediess, we
included the function ‘get4()’ which performs theecessary
conversion.

After inclusion of the amendments above we were &bperform 4. REFERENCES

simulations using RTP without problems. We, themfalecided [1] RFC 3550. RTP: A Transport Protocol for Real-Time
to contribute this work for the benefit of everyoinerested in

) X ! Applications.
using OMNeT++ for RTP related simulations. .
[2] INET Framework Protocol Matrix, 29 October 2010,
http://inet.omnetpp.org/index.php?n=Main.Status.
3. CONCLUSION P pP-orgindex-pp
In this paper we discuss the problems related lith RTP [3] IhNEjI;/.Framework for OMNeT++, v4.0. 15 May 2010.
implementation as provided in the INET framework frse with ttp://inet.omnetpp.org.

OMNeT++. Although our work is related to the v4edease of the

OMNeT++ package, the reported status of the RTP

implementation in the present release (v4.1) keli incomplete’. APPENDI X

We, therefore, studied the respective code, idedtifall the Please note that the RTP Amendments Guide, thetdigewith

relevant problems and made amendments to the atignde, the Original files and the directory with the Mddif files are
which resulted in a functional RTP implementatibattcan now available online as a single .rar file:

be used to run RTP related simulations.
http://users.uom.gr/~pfoul/STUDENTS/BSc/RTP_CoredctUse
r_Guide_and_Files.rar

