A 6LoWPAN Simulation Model for OMNeT++

Michael Kirsche
Computer Networks Communication Systems Group
Brandenburg University of Technology, Germany
6LoWPAN and the IoT

- IoT → interconnecting the physical world with the digital / virtual world
 - All devices end-to-end connected by IPv6
- IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN)
 - “Glue between embedded and desktop world”
 - Missing simulation support

"Traditional" TCP/IP Protocol Stack

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>HTTP, RTP</td>
</tr>
<tr>
<td>Transport</td>
<td>TCP, UDP, ICMP</td>
</tr>
<tr>
<td>Network</td>
<td>IP</td>
</tr>
<tr>
<td>Data Link and Physical</td>
<td>Ethernet, MAC and PHY</td>
</tr>
</tbody>
</table>

6LoWPAN Protocol Stack

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>TCP, UDP, ICMP</td>
</tr>
<tr>
<td>Network</td>
<td>IPv6</td>
</tr>
<tr>
<td>Data Link and Physical</td>
<td>6LoWPAN, IEEE 802.15.4, MAC and PHY</td>
</tr>
</tbody>
</table>
Preliminary Considerations

• What is available / used?
 - Real world: IPv6 and 6LoWPAN-capable OS / stacks
 - OMNeT++ world: IPv6 support (via INET)
 - Other simulators: Cooja (simulate Contiki entities)
 NS-3 (has code??)

• What is required?
 - Full functionality (to analyse interconnectivity & other advanced features)
 - Compatibility and validation

• What to do?
 1. Model from scratch
 • Probably a bad choice due to abstraction and reduced functionality
 2. Integrate an existing implementation
 • First step of “integrating” (simulating) an embedded OS (Contiki) in OMNeT++
Using Contiki Code with OMNeT++

• For this work → integrate 6LoWPAN implementation in OMNeT++
• Several approaches (refer to publication)
 ↪ Create a new platform for Contiki

• How to integrate and use 6LoWPAN in OMNeT++:
 (simplified summary)
 1. Define new platform for Contiki (omnetpp)
 2. Compile Contiki as a static library
 3. Create a “6loWPAN wrapper” for OMNeT++ / INET
 4. Redirect Contiki’s 6LoWPAN input / output functions at linking time
 (linker option --wrap) to appropriate OMNeT++ / INET functions
 5. Integrate the 6LoWPAN wrapper in IPv6-capable INET host
 6. Simulate with an IEEE 802.15.4-capable network
 • IEEE 802.15.4 provided by INETMANET or MiXiM / mixnet
The Modules’ Modus Operandi (1)

1. Initialize the 6LoWPAN module and according buffers

2. Set function pointers from Contiki’s input / output interfaces to according OMNeT++ functions

3. Initialize memory management to simulate multiple Contiki instances
 - Instances are identified via OMNeT++ gate ID
 - Check interfaces for IEEE 802.15.4 capabilities

4. Transform incoming higher layer packets to Contiki’s format
 - Identify memory slot / instance and switch to last context
 - Data from OMNeT++ message is written directly in UIP_BUFFER
The Modules’ Modus Operandi (2)

5. Call tcp_output function when transformation is completed
 • 6LoWPAN handles compression and fragmentation
 • Link-local address of next hop is provided by INET IPv6-ND

6. Finished packets are sent (from Contiki’s code, function call is redirected to OMNeT++ via link-time wrapping)
 • Generated bytestream is captured and written in a queue

7. Incoming packets from lower layers are treated in a similar way
 • Input function of 6LoWPAN code is called instead
 • Memory management used to switch contexts and handle packet fragmentation / reassembly
 • Only reassembled packets are sent to OMNeT++, fragments are treated by Contiki’s 6LoWPAN code
In conclusion…

• We provide a 6LoWPAN simulation model that supports:
 • TCP, UDP, ICMP
 • Integration into INET
 • Use with INETMANET / MiXiM
 • IPv6, HC1, HC06 compression
 • Fragmentation
 • Limited neighbour discovery (without context distribution)
 • … a first step for an integration of Contiki into OMNeT++ …

• Current problems:
 • No extension headers
 • Code still pretty buggy
 • Integration via static library

• Future plans:
 • Integration via dynamic library
 • RFC 6775 extensions
 • Add more protocols from Contiki
 • Simulate more IoT scenarios with OMNeT++

See you at my poster for additional information