INET framework extensions for TCP
Vegas and TCP Westwood

María Fernández, Carlos T. Calafate, Juan-Carlos Cano and Pietro Manzoni

Computer Networks Group (GRC)
Department of Computing Engineering
Technical University of Valencia (UPV)
SPAIN

http://www.grc.upv.es/
Outline

- Evolution of TCP
- TCP in INET 2.0 / OMNeT++
- Implementation
- Simulation results
- Conclusions & Future Work
Evolution of TCP

Initial proposal
RFC 675 (1974)
RFC 793 (1981)

Wireless-specific solutions
I-TCP (1995)
Snoop TCP (1995)
Mobile-TCP (1997)
WTCP (1999)
TCP Santa Cruz (2000)
TCP Westwood (2002)
...

General performance improvements
Van Jacobson (1988-90)
TCP Vegas (1994)
TCP SACK (1996)
TCP FACK (1996)
Congestion control (1997)
...
Multipath (2011)

And many more...

Articles on TCP (WoK)
TCP in INET2.0 / OMNeT++

EXISTING...

TCPAgorithm
- DumbTCP
- TCPBaseAlg
 - TCPNoCongestionControl
 - TCPNew
 - TCPNew
 - TCPTahoe
 - TCPReno
 - TCPTahoeRenoFamily

NEW!!!
TCP Vegas: cwnd management

```c
// Once per RTT
void TCPVegas::receivedDataAck(uint32 firstSeqAcked) {
    TCPBaseAlg::receivedDataAck(firstSeqAcked);
    simtime_t tSent = state->v_sendtime[(firstSeqAcked - (state->iss+1)) % state->v_maxsnd];
    simtime_t currentTime = simTime();

    if (tSent != 0 && num_transmits == 1) {
        simtime_t newRTT = currentTime - tSent;
        state->v_sumRTT += newRTT;
        ++state->v_cntRTT;
        if (newRTT > 0) {
            if(newRTT < state->v_baseRTT)
                state->v_baseRTT = newRTT;
            simtime_t n = newRTT - state->v_sa/8;
            state->v_sa += n;
            n = n < 0 ? -n : n;
            state->v_sd += n;
            state->v_vrtt_timeout = ((state->v_sa / 4 + state->v_sd) / 2;
            state->v_vrtt_timeout += (state->v_vrtt_timeout / 16);
        }
    }
    state->v_incr = state->v_mss; // incr
} // end slow start

// Cong. avoidance
else {
    if (diff > v_beta) state->v_incr = state->v_mss; // decr
    else if (diff < v_alpha) state->v_incr = state->v_mss; // incr
    else state->v_incr = 0; // same
} // end cong. avoidance
} // end 'Once per RTT'
```

TCP Vegas: RTT & timeout

TCP Westwood: BW estimation

```c
void TCPWestwood::recalculateBWE(uint32 cumul_ack) {
    simtime_t currentTime = simTime();
    simtime_t timeAck = currentTime - state->w_lastAckTime;

    // Update BWE
    if(timeAck > 0) {
        double old_sample_bwe = state->w_sample_bwe;
        double old_bwe = state->w_bwe;
        state->w_sample_bwe = (cumul_ack) / timeAck;
        state->w_bwe = 0.9047*old_bwe +
                      0.0476*(state->w_sample_bwe + old_sample_bwe);
    }
    state->w_lastAckTime = currentTime;
}
```
Simulation results

- Evaluated scenario:

- Original authors’ data:
 - Vegas improves Reno by about 46%
 - Westwood improves Reno by about 30%
Simulation results

- Retransmission behavior

- TCP Vegas reduces timeouts by retransmitting more data
- TCP Westwood: Reno efficiency with less timeouts
CONCLUSIONS

- The world is wireless!
- BUT...
- The standard TCP protocol often offers a reduced performance in wireless environments
 - Differences between wired and wireless networks (loss prone)
- Although many alternatives to TCP have been proposed, INET 2.0/OMNeT++ only includes standard TCP
- FIRST STEP: We implemented TCP Vegas and TCP Westwood for INET 2.0
- Experimental results show that:
 - The performance levels achieved agree with previously published results
 - Significant benefits are achieved for channels characterized by high losses or high delays (or both)
 - There is still a great margin for improvement \(\rightarrow \) several research works on the topic

FUTURE WORK

- Develop new TCP variants for INET
- Develop new protocols, comparing against the most effective solutions available
Available for download

https://github.com/maferhe2/TCP-Vegas-Westwood
Questions?