Integration of the packetdrill Testing Tool in INET

Irene Rüngeler (i.ruengeler@fh-muenster.de)
Michael Tüxen (tuexen@fh-muenster.de)
Outline

• Testing in INET
• packetdrill
• packetdrill in INET
• Summary and Outlook
Testing

- INET supports smoke testing, fingerprint testing, functional testing, statistical testing

- Testing of transport protocols can make use of this, but also needs flexible ways to
 - Control the interaction with its upper layer
 - Control the interaction with its peer
packetdrill

- Developed by Google and released under GPL in 2013
- Script based testing tool for transport protocols
- Allows testing TCP and UDP stacks using local mode and remote mode
- Runs on Linux, FreeBSD, …
Address Configuration

System under Test: 192.168.0.1
Gateway: 192.168.0.2
Peer: 192.0.2.1

Address blocks used (RFC 5735):
- 192.0.2.0/24 Test-Net-1
- 192.168.0.0/16 Private Use Networks
UDP Example

0.000 socket(...., SOCK_DGRAM, IPPROTO_UDP) = 3
+1.000 sendto(3, ..., 1000, 0, ..., ...) = 1000
+0.000 udp(1000)
+1.000 udp(1000)
+0.000 recvfrom(3, ..., 1000, 0, ..., ...) = 1000
+1.000 close(3) = 0
TCP Example

0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
+0.000 bind(3, ..., ...) = 0
+0.000 listen(3, 1) = 0
+0.100 < S 0:0(0) win 32792 <mss 1460, sackOK, nop, nop, nop, wscale 7>
+0.000 > S. 0:0(0) ack 1 <...
+0.100 < F. 1:1(0) ack 1 win 257
+0.000 accept(3, ..., ...) = 4
+0.100 < F. 1:1(0) ack 1 win 260
+0.000 > . 1:1(0) ack 2
+0.020 close(4) = 0
+0.000 > F. 1:1(0) ack 2
+0.000 > . 2:2(0) ack 2 win 32792
Processing of Scripts

- Outgoing packets are verified
- Incoming packets are injected
- System calls are executed and parameters are verified
- Timing is verified
- In case of an error, processing stops
Packetdrill Port to INET

• It should be possible to share test scripts between Google’s packetdrill and the INET port

• Reuse code where appropriate

• Integrate into the C++ environment of OMNeT++/INET where appropriate

• A packetdrill test is similar to a module test and consists of a .pkt file, a .ned file, a routing file and a .test file
TUN Interfaces
Limitations of the INET Port

- Remote mode unsupported
- Python snippets, shell code, command line arguments unsupported
- Blocking system calls unsupported
- getsockopt unsupported
- IPv6 unsupported
Status

- TUN interface integrated in the official INET repository
- packetdrill with UDP support under review by Rudolf
- TCP support ready for submission based on Rudolf’s feedback
- SCTP support added to Google’s version and the INET port. Will be provided after the TCP support is integrated
Conclusion and Outlook

• packetdrill is a very useful tool for testing kernel transport protocol stacks

• The port to INET allows testing the transport protocols in the INET framework sharing test scripts with Google’s packetdrill

• Support for multihoming needs to be added (for SCTP and MPTCP)

• Implementation of test suites for TCP and SCTP
%description:
SUT is server. It accepts a connection. The peer closes the connection.

%#--
%inifile: omnetpp.ini
[General]
network = PacketDrillTcp
debug-on-errors = true
ned-path = ;.;./.;./.src;.;./.lib
**.scriptFile="./lib/openPassive.pkt"
**.pdhost.numTcpTunApps = 1
**.hasTun = true
**.startTime = 2s
**.pdhost.routingFile = "./lib/pdhost.mrt"
**.pdhost.numPcapRecorders=1
**.pdhost.pcapRecorder[0].pcapFile ="openPassive.pcap"
**.pdhost.pcapRecorder[0].moduleNamePatterns="tun"
**.pdhost.pcapRecorder[0].sendingSignalNames="packetSentToUpper"
**.pdhost.pcapRecorder[0].receivingSignalNames ="packetReceivedFromUpper"
**.pdapp.dataTransferMode = "bytecount"
**.tcp.mss = 1460
**.tcp.sackSupport = true
**.tcp.windowScalingSupport = true
**.tcp.windowScalingFactor = 6
**.tcp.advertisedWindow = 29200
**.tcp.useDataNotification = true
%#--
%not-contains: test.out
Packetdrill error:
%#--