D UNIVERSITÄT BERN

OMNeT++ Community Summit, Zürich, September 3-4, 2015

Issues with State-based Energy Consumption Modelling

Torsten Braun, Philipp Hurni (University of Bern) Vitor Bernardo, Marilia Curado (University of Coimbra) braun@inf.unibe.ch, cds.unibe.ch

State-based Energy Consumption Model

Current Draw of a Sensor Node

b UNIVERSITÄT BERN

h

3 States Model for Sensor Node Energy Consumption

b UNIVERSITÄT BERN

70

Measured vs. Estimated Energy Consumption

5

Current modelling by 3 States Model with State Transitions

b UNIVERSITÄT BERN

OMNeT++ Community Summit, Zürich, September 3-4, 2015

b UNIVERSITÄT REPN

^b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

IEEE 802.11 Network Card Power Consumption with Power Management

^b UNIVERSITÄT BERN

OMNeT++ Community Summit, Zürich, September 3-4, 2015

States Transition Power Consumption Pattern with Power Saving: Connecting

OMNeT++ Community Summit, Zürich, September 3-4, 2015

States Transition Power Consumption Pattern with Power Saving: End Transmission/Reception

OMNeT++ Community Summit, Zürich, September 3-4, 2015

Discussion and Conclusions

D UNIVERSITÄT BERN

- Presentation of energy measurements from previous work in wireless sensor / local area networks.
- Observations
 - 1. Energy consumption during state transitions can significantly differ from previous and subsequent states.
 - 2. During active states (e.g., transmitting, receiving, active idle/connected without traffic) energy consumption can vary dependent on current traffic. This includes reception of control messages, e.g., IEEE 802.11 beacons.
- For accurate evaluation of energy consumption in either software-based energy estimation or simulation, where state-based energy consumption models have been applied previously:
 - 1. More accurate modelling of state transitions and dynamic fluctuations, e.g., by considering state transition behaviour.
 - 2. Further improvements by considering other parameters such as number/size of received/transmitted data/control messages.

h

- > <u>braun@inf.unibe.ch</u>
- > <u>cds.unibe.ch</u>