OMNeT++ Community Summit, 2015

Beyond INET 3.0

IBM Research - Zurich, Switzerland – September 3 - 4, 2015
Levente Mészáros
Overview

Network node architecture refactoring
Cross-layer communication and optimization
Mobility refactoring
Real world applications often use different kinds of sockets and protocols simultaneously.
• Nodes currently have separate submodule vectors for different kinds of applications

• What if an application wants to use TCP and UDP simultaneously?
• TUN applications are currently connected to TUN interfaces only

• TUN applications are useless without being connected to other protocols

• Should we connect them to TCP, UDP, IPv4, or all of them?
- Dual network stack needs extra dispatch mechanism towards network protocols
- Where should the dispatch mechanism be?
- In general, protocols of adjacent OSI layers should be in many-to-many relationship
TCP Applications

- Limitation: TCP applications exclusively and directly connect to TCP.
- Dispatch from TCP towards applications is built into TCP.
- Dispatch from IPv4 towards TCP is built into IPv4.
UDP Application

- Limitations: UDP applications exclusively and directly connect to UDP
- Dispatch from UDP towards applications is built into UDP
- Dispatch from IPv4 towards UDP is built into IPv4
Ping Application

- Network layers currently have separate gates for ping applications (pingIn, pingOut)
- IPv4 needs to do special ICMP packet handling to reach ping applications
New Network Node Architecture

- Added separate packet dispatchers between OSI layers
- Eliminated dispatch mechanisms from individual protocols
• Protocols have to register themselves in the dispatcher (protocolId, gate)
Interfaces also have to register themselves in the dispatcher (interfaceId, gate)
Simpler Network Node Architectures

- Dispatchers are optional
- Modules can still be organized in other ways
IPv4 Network Layer Architecture

- IPv4 network layer also uses a dispatcher internally.
- ARP and IP don't exchange packets, thus no connection between them.
TCP Application

- TCP application still uses a TCPSocket to send and receive packets
- Dispatcher learns where sockets are, based on socket open and close commands
UDP Application

• UDP application still uses a UDPSocket to send and receive packets

• Dispatcher routes packets based on the destination protocol

• Destination protocol is determined from control info and packet class
Ping Application

- Ping application uses a raw IPv4Socket to send and receive ICMP echo packets
- There's no special network layer gate for ping applications
Ethernet applications can directly communicate using ethernet sockets.
MANET Routing Application

- MANET routers now share the same network node architecture
- Routing application can be replaced from INI file
- Routing applications can still use all kinds of sockets
Tunnel Application

- Tunnel application simultaneously opens a TUN device and a raw IPv4Socket
• Node receives packet from network
Tunnel Application 2

- Node receives packet from network
- IPv4 forwards packet to TUN interface
Tunnel Application 3

- Node receives packet from network
- IPv4 forwards packet to TUN interface
- Application receives packet from TUN interface
Tunnel Application 4

- Node receives packet from network
- IPv4 forwards packet to TUN interface
- Application receives packet from TUN interface
- Application sends packet inside another IPv4 packet
Standard Host 1
Overview

Network node architecture refactoring
Cross-layer communication and optimization
Mobility refactoring
Cross-layer design

- Quality of service parameters
- Resource optimization parameters

- Link quality indication
- Physical channel conditions
Applications send UDP packets on a specific interface by setting the interfaceId in UDPControllInfo.

```java
class UDPSendCommand extends UDPControllInfo {
    L3Address srcAddr;
    L3Address destAddr;
    int destPort = -1;
    int interfaceId = -1;
}
```

Currently applications cannot even specify type of service parameter to control the quality of service functionality.
New Cross-Layer Communication

- As packets go through the layers

- Packets collect various request tags

- Packets collect various indication tags

- Physical Layer
 - Link Layer
 - Network Layer
 - Transport Layer
 - Application Layer
Overview

Network node architecture refactoring
Cross-layer communication and optimization
Mobility refactoring
Current Mobility Models 1

- There are mobility models that do static positioning
- There are mobility models that move nodes around
- How to combine these models?
There are group mobility models with built-in differences for individual nodes.

How to reuse existing models for group mobility?

How to model a docking ship with passengers moving around?
Sometimes positioning and orientation are best expressed in separate mobility models (e.g. satellites)

Sometimes elevation may be derived from the position on the surface of the Earth (e.g. a moving vehicle)
Mobility Superposition

- Support combining different positioning and orientation models using superposition
- Support start/end time (limits) for mobility models
Coordinate Systems

- Geographic coordinate system such as WGS-84
- Abstract Cartesian coordinate system

- How to express coordinates inside buildings around a city?
- How to express antenna orientation of a vehicle separately?
Thank you for your kind attention!